具有马尔可夫发射的隐马尔可夫模型

IF 0.8 Q3 STATISTICS & PROBABILITY
Karima Elkimakh, A. Nasroallah
{"title":"具有马尔可夫发射的隐马尔可夫模型","authors":"Karima Elkimakh, A. Nasroallah","doi":"10.1515/mcma-2020-2072","DOIUrl":null,"url":null,"abstract":"Abstract In our paper [A. Nasroallah and K. Elkimakh, HMM with emission process resulting from a special combination of independent Markovian emissions, Monte Carlo Methods Appl. 23 2017, 4, 287–306] we have studied, in a first scenario, the three fundamental hidden Markov problems assuming that, given the hidden process, the observed one selects emissions from a combination of independent Markov chains evolving at the same time. Here, we propose to conduct the same study with a second scenario assuming that given the hidden process, the emission process selects emissions from a combination of independent Markov chain evolving according to their own clock. Three basic numerical examples are studied to show the proper functioning of the iterative algorithm adapted to the proposed model.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"303 - 313"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2072","citationCount":"0","resultStr":"{\"title\":\"Hidden Markov Model with Markovian emission\",\"authors\":\"Karima Elkimakh, A. Nasroallah\",\"doi\":\"10.1515/mcma-2020-2072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In our paper [A. Nasroallah and K. Elkimakh, HMM with emission process resulting from a special combination of independent Markovian emissions, Monte Carlo Methods Appl. 23 2017, 4, 287–306] we have studied, in a first scenario, the three fundamental hidden Markov problems assuming that, given the hidden process, the observed one selects emissions from a combination of independent Markov chains evolving at the same time. Here, we propose to conduct the same study with a second scenario assuming that given the hidden process, the emission process selects emissions from a combination of independent Markov chain evolving according to their own clock. Three basic numerical examples are studied to show the proper functioning of the iterative algorithm adapted to the proposed model.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"26 1\",\"pages\":\"303 - 313\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2020-2072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2020-2072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在我们的论文[A.A.Nasroallah和K.Elkimakh,具有独立马尔可夫排放的特殊组合产生的排放过程的HMM,蒙特卡罗方法应用。23 2017,4287–306]中,我们在第一种情况下研究了三个基本的隐马尔可夫问题,假设在给定隐过程的情况下,观察到的一个从同时进化的独立马尔可夫链的组合中选择排放。在这里,我们建议对第二种情况进行同样的研究,假设给定隐藏过程,排放过程从根据自身时钟进化的独立马尔可夫链的组合中选择排放。研究了三个基本的数值例子,以表明适用于所提出模型的迭代算法的正确功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Markov Model with Markovian emission
Abstract In our paper [A. Nasroallah and K. Elkimakh, HMM with emission process resulting from a special combination of independent Markovian emissions, Monte Carlo Methods Appl. 23 2017, 4, 287–306] we have studied, in a first scenario, the three fundamental hidden Markov problems assuming that, given the hidden process, the observed one selects emissions from a combination of independent Markov chains evolving at the same time. Here, we propose to conduct the same study with a second scenario assuming that given the hidden process, the emission process selects emissions from a combination of independent Markov chain evolving according to their own clock. Three basic numerical examples are studied to show the proper functioning of the iterative algorithm adapted to the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信