{"title":"用于中继网络的带内全双工MIMO PLC系统","authors":"Francisco J. Cañete , Gautham Prasad , Lutz Lampe","doi":"10.1016/j.dcan.2023.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>In Power Line Communications (PLC), there are regulatory masks that restrict the transmit power spectral density for electromagnetic compatibility reasons, which creates coverage issues despite the not too long distances. Hence, PLC networks often employ repeaters/relays, especially in smart grid neighborhood area networks. Even in broadband indoor PLC systems that offer a notable data rate, relaying may pave the way to new applications like being the backbone for wireless technologies in a cost-effective manner to support the Internet-of-things paradigm. In this paper, we study Multiple-Input Multiple-Output (MIMO) PLC systems that incorporate in-band full-duplex functionality in relaying networks. We present several MIMO configurations that allow end-to-end half-duplex or full-duplex operations and analyze the achievable performance with state-of-the-art PLC systems. To reach this analysis, we get channel realizations from random network layouts for indoor and outdoor scenarios. We adopt realistic MIMO channel and noise models and consider transmission techniques according to PLC standards. The concepts discussed in this work can be useful in the design of future PLC relay-aided networks for different applications that look for a coverage extension and/or throughput: smart grids with enhanced communications in outdoor scenarios, and “last meter” systems for high-speed connections everywhere in indoor ones.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 1","pages":"Pages 145-159"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-band full-duplex MIMO PLC systems for relaying networks\",\"authors\":\"Francisco J. Cañete , Gautham Prasad , Lutz Lampe\",\"doi\":\"10.1016/j.dcan.2023.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In Power Line Communications (PLC), there are regulatory masks that restrict the transmit power spectral density for electromagnetic compatibility reasons, which creates coverage issues despite the not too long distances. Hence, PLC networks often employ repeaters/relays, especially in smart grid neighborhood area networks. Even in broadband indoor PLC systems that offer a notable data rate, relaying may pave the way to new applications like being the backbone for wireless technologies in a cost-effective manner to support the Internet-of-things paradigm. In this paper, we study Multiple-Input Multiple-Output (MIMO) PLC systems that incorporate in-band full-duplex functionality in relaying networks. We present several MIMO configurations that allow end-to-end half-duplex or full-duplex operations and analyze the achievable performance with state-of-the-art PLC systems. To reach this analysis, we get channel realizations from random network layouts for indoor and outdoor scenarios. We adopt realistic MIMO channel and noise models and consider transmission techniques according to PLC standards. The concepts discussed in this work can be useful in the design of future PLC relay-aided networks for different applications that look for a coverage extension and/or throughput: smart grids with enhanced communications in outdoor scenarios, and “last meter” systems for high-speed connections everywhere in indoor ones.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 1\",\"pages\":\"Pages 145-159\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000871\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000871","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
In-band full-duplex MIMO PLC systems for relaying networks
In Power Line Communications (PLC), there are regulatory masks that restrict the transmit power spectral density for electromagnetic compatibility reasons, which creates coverage issues despite the not too long distances. Hence, PLC networks often employ repeaters/relays, especially in smart grid neighborhood area networks. Even in broadband indoor PLC systems that offer a notable data rate, relaying may pave the way to new applications like being the backbone for wireless technologies in a cost-effective manner to support the Internet-of-things paradigm. In this paper, we study Multiple-Input Multiple-Output (MIMO) PLC systems that incorporate in-band full-duplex functionality in relaying networks. We present several MIMO configurations that allow end-to-end half-duplex or full-duplex operations and analyze the achievable performance with state-of-the-art PLC systems. To reach this analysis, we get channel realizations from random network layouts for indoor and outdoor scenarios. We adopt realistic MIMO channel and noise models and consider transmission techniques according to PLC standards. The concepts discussed in this work can be useful in the design of future PLC relay-aided networks for different applications that look for a coverage extension and/or throughput: smart grids with enhanced communications in outdoor scenarios, and “last meter” systems for high-speed connections everywhere in indoor ones.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.