具有有限对数积分的De Branges正则系统

IF 1.9 1区 数学 Q1 MATHEMATICS
R. Bessonov, S. Denisov
{"title":"具有有限对数积分的De Branges正则系统","authors":"R. Bessonov, S. Denisov","doi":"10.2140/apde.2021.14.1509","DOIUrl":null,"url":null,"abstract":"Krein-de Branges spectral theory establishes a correspondence between the class of differential operators called canonical Hamiltonian systems and measures on the real line with finite Poisson integral. We further develop this area by giving a description of canonical Hamiltonian systems whose spectral measures have logarithmic integral converging over the real line. This result can be viewed as a spectral version of the classical Szego theorem in the theory of polynomials orthogonal on the unit circle. It extends Krein-Wiener completeness theorem, a key fact in the prediction of stationary Gaussian processes.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"De Branges canonical systems with finite logarithmic integral\",\"authors\":\"R. Bessonov, S. Denisov\",\"doi\":\"10.2140/apde.2021.14.1509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Krein-de Branges spectral theory establishes a correspondence between the class of differential operators called canonical Hamiltonian systems and measures on the real line with finite Poisson integral. We further develop this area by giving a description of canonical Hamiltonian systems whose spectral measures have logarithmic integral converging over the real line. This result can be viewed as a spectral version of the classical Szego theorem in the theory of polynomials orthogonal on the unit circle. It extends Krein-Wiener completeness theorem, a key fact in the prediction of stationary Gaussian processes.\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2021.14.1509\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2021.14.1509","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

Krein-de Branges谱理论建立了一类称为正则哈密顿系统的微分算子与有限泊松积分实线上的测度之间的对应关系。我们进一步发展了这一领域,给出了谱测度具有收敛于实线上的对数积分的正则哈密顿系统的描述。这个结果可以看作是单位圆上正交多项式理论中经典Szego定理的谱版。它扩展了克林-维纳完备性定理,这是平稳高斯过程预测中的一个关键事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De Branges canonical systems with finite logarithmic integral
Krein-de Branges spectral theory establishes a correspondence between the class of differential operators called canonical Hamiltonian systems and measures on the real line with finite Poisson integral. We further develop this area by giving a description of canonical Hamiltonian systems whose spectral measures have logarithmic integral converging over the real line. This result can be viewed as a spectral version of the classical Szego theorem in the theory of polynomials orthogonal on the unit circle. It extends Krein-Wiener completeness theorem, a key fact in the prediction of stationary Gaussian processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信