{"title":"开发利用MODIS数据估算气温的机器学习模型","authors":"G. Ovando, S. Sayago, M. Bocco","doi":"10.31047/1668.298x.v39.n1.33225","DOIUrl":null,"url":null,"abstract":"Air temperature is a key variable in a wide range of environmental applications, including land–atmosphere interaction, climate change research and hydrology and crop growth models, among others. The objective of this study was to estimate daily maximum (Tmax) and minimum (Tmin) temperatures, based on MODIS AQUA/TERRA land surface temperature (LST), NDVI, extraterrestrial solar radiation and precipitation data. Artificial neural networks (ANN) and random forests (RF) models were developed to predict these temperatures covering weather stations in Córdoba (Argentina) for 2018-2020. The results show that RF and ANN machine learning algorithms are capable of modeling non-linear relationships between registered temperatures and LST MODIS data, in a very robust way. The validation of the models confirms that Tmax and Tmin can be accurately estimated using, jointly or separately, AQUA and TERRA LST. The best models present determination coefficients equal to 0.81/0.91 and root mean square error of 2.7/2.1 ºC for Tmax/Tmin, when using AQUA LST day/night satellite overpass time data, respectively. The robustness and confidence of the models developed, and the ease and free accessibility of input data at a global scale, suggest that these methodologies have the potential to be applied to other regions.","PeriodicalId":39278,"journal":{"name":"AgriScientia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing machine learning models for air temperature estimation using MODIS data\",\"authors\":\"G. Ovando, S. Sayago, M. Bocco\",\"doi\":\"10.31047/1668.298x.v39.n1.33225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air temperature is a key variable in a wide range of environmental applications, including land–atmosphere interaction, climate change research and hydrology and crop growth models, among others. The objective of this study was to estimate daily maximum (Tmax) and minimum (Tmin) temperatures, based on MODIS AQUA/TERRA land surface temperature (LST), NDVI, extraterrestrial solar radiation and precipitation data. Artificial neural networks (ANN) and random forests (RF) models were developed to predict these temperatures covering weather stations in Córdoba (Argentina) for 2018-2020. The results show that RF and ANN machine learning algorithms are capable of modeling non-linear relationships between registered temperatures and LST MODIS data, in a very robust way. The validation of the models confirms that Tmax and Tmin can be accurately estimated using, jointly or separately, AQUA and TERRA LST. The best models present determination coefficients equal to 0.81/0.91 and root mean square error of 2.7/2.1 ºC for Tmax/Tmin, when using AQUA LST day/night satellite overpass time data, respectively. The robustness and confidence of the models developed, and the ease and free accessibility of input data at a global scale, suggest that these methodologies have the potential to be applied to other regions.\",\"PeriodicalId\":39278,\"journal\":{\"name\":\"AgriScientia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriScientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31047/1668.298x.v39.n1.33225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriScientia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31047/1668.298x.v39.n1.33225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Developing machine learning models for air temperature estimation using MODIS data
Air temperature is a key variable in a wide range of environmental applications, including land–atmosphere interaction, climate change research and hydrology and crop growth models, among others. The objective of this study was to estimate daily maximum (Tmax) and minimum (Tmin) temperatures, based on MODIS AQUA/TERRA land surface temperature (LST), NDVI, extraterrestrial solar radiation and precipitation data. Artificial neural networks (ANN) and random forests (RF) models were developed to predict these temperatures covering weather stations in Córdoba (Argentina) for 2018-2020. The results show that RF and ANN machine learning algorithms are capable of modeling non-linear relationships between registered temperatures and LST MODIS data, in a very robust way. The validation of the models confirms that Tmax and Tmin can be accurately estimated using, jointly or separately, AQUA and TERRA LST. The best models present determination coefficients equal to 0.81/0.91 and root mean square error of 2.7/2.1 ºC for Tmax/Tmin, when using AQUA LST day/night satellite overpass time data, respectively. The robustness and confidence of the models developed, and the ease and free accessibility of input data at a global scale, suggest that these methodologies have the potential to be applied to other regions.
AgriScientiaAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊介绍:
AgriScientia es una revista de acceso abierto, de carácter científico-académico, gestionada por el Área de Difusión Científica de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba, Argentina. La revista recibe artículos en los idiomas español e inglés. El objetivo de esta publicación es la difusión de los resultados de investigaciones de carácter agronómico. Está destinada a investigadores, estudiantes de pregrado, grado y posgrado, profesionales en el área de las ciencias agropecuarias y público en general interesado en las temáticas relacionadas. Su periodicidad es semestral. Los artículos se reciben durante todo el año. Los tipos de documentos que se publican son artículos científicos, comunicaciones y revisiones.