配体-受体结合的无序模型

Q2 Mathematics
Mobolaji Williams
{"title":"配体-受体结合的无序模型","authors":"Mobolaji Williams","doi":"10.1515/cmb-2022-0137","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a derangement model of ligand-receptor binding that allows us to quantitatively frame the question “How can ligands seek out and bind to their optimal receptor sites in a sea of other competing ligands and suboptimal receptor sites?” To answer the question, we first derive a formula to count the number of partial generalized derangements in a list, thus extending the derangement result of Gillis and Even. We then compute the general partition function for the ligand-receptor system and derive the equilibrium expressions for the average number of bound ligands and the average number of optimally bound ligands. A visual model of squares assembling onto a grid allows us to easily identify fully optimal bound states. Equilibrium simulations of the system reveal its extremes to be one of two types, qualitatively distinguished by whether optimal ligand-receptor binding is the dominant form of binding at all temperatures and quantitatively distinguished by the relative values of two critical temperatures. One of those system types (termed “search-limited,” as it was in previous work) does not exhibit kinetic traps and we thus infer that biomolecular systems where optimal ligand-receptor binding is functionally important are likely to be search-limited.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"10 1","pages":"123 - 166"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derangement model of ligand-receptor binding\",\"authors\":\"Mobolaji Williams\",\"doi\":\"10.1515/cmb-2022-0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a derangement model of ligand-receptor binding that allows us to quantitatively frame the question “How can ligands seek out and bind to their optimal receptor sites in a sea of other competing ligands and suboptimal receptor sites?” To answer the question, we first derive a formula to count the number of partial generalized derangements in a list, thus extending the derangement result of Gillis and Even. We then compute the general partition function for the ligand-receptor system and derive the equilibrium expressions for the average number of bound ligands and the average number of optimally bound ligands. A visual model of squares assembling onto a grid allows us to easily identify fully optimal bound states. Equilibrium simulations of the system reveal its extremes to be one of two types, qualitatively distinguished by whether optimal ligand-receptor binding is the dominant form of binding at all temperatures and quantitatively distinguished by the relative values of two critical temperatures. One of those system types (termed “search-limited,” as it was in previous work) does not exhibit kinetic traps and we thus infer that biomolecular systems where optimal ligand-receptor binding is functionally important are likely to be search-limited.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"10 1\",\"pages\":\"123 - 166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2022-0137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2022-0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们介绍了一个配体-受体结合的紊乱模型,使我们能够定量地提出“配体如何在其他竞争配体和次优受体位点的海洋中寻找并结合到它们的最佳受体位点?”为了回答这个问题,我们首先推导出一个公式来计算列表中部分广义紊乱的数量,从而扩展了Gillis和Even的错乱结果。然后,我们计算了配体-受体系统的一般配分函数,并导出了结合配体的平均数量和最佳结合配体平均数量的平衡表达式。正方形组装到网格上的视觉模型使我们能够轻松识别完全最优的束缚状态。该系统的平衡模拟揭示了其极端是两种类型之一,通过最佳配体-受体结合是否是所有温度下的主要结合形式进行定性区分,并通过两个临界温度的相对值进行定量区分。其中一种系统类型(如前所述,被称为“搜索受限”)没有表现出动力学陷阱,因此我们推断,最佳配体-受体结合在功能上重要的生物分子系统可能是搜索受限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derangement model of ligand-receptor binding
Abstract We introduce a derangement model of ligand-receptor binding that allows us to quantitatively frame the question “How can ligands seek out and bind to their optimal receptor sites in a sea of other competing ligands and suboptimal receptor sites?” To answer the question, we first derive a formula to count the number of partial generalized derangements in a list, thus extending the derangement result of Gillis and Even. We then compute the general partition function for the ligand-receptor system and derive the equilibrium expressions for the average number of bound ligands and the average number of optimally bound ligands. A visual model of squares assembling onto a grid allows us to easily identify fully optimal bound states. Equilibrium simulations of the system reveal its extremes to be one of two types, qualitatively distinguished by whether optimal ligand-receptor binding is the dominant form of binding at all temperatures and quantitatively distinguished by the relative values of two critical temperatures. One of those system types (termed “search-limited,” as it was in previous work) does not exhibit kinetic traps and we thus infer that biomolecular systems where optimal ligand-receptor binding is functionally important are likely to be search-limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信