Lambda^2统计收敛性及其在Korovkin第二定理中的应用

IF 0.3 Q4 MATHEMATICS
Valdete Loku, N. Braha
{"title":"Lambda^2统计收敛性及其在Korovkin第二定理中的应用","authors":"Valdete Loku, N. Braha","doi":"10.24193/SUBBMATH.2019.4.08","DOIUrl":null,"url":null,"abstract":"In this paper, we use the notion of strong $(N, \\lambda^2)-$summability to generalize the concept of statistical convergence. We call this new method a $\\lambda^2-$statistical convergence and denote by $S_{\\lambda^2}$ the set of sequences which are $\\lambda^2-$statistically convergent. We find its relation to statistical convergence and strong $(N, \\lambda^2)-$summability. We will define a new sequence space and will show that it is Banach space. Also we will prove the second Korovkin type approximation theorem for $\\lambda^2$-statistically summability and the rate of $\\lambda^2$-statistically summability of a sequence of positive linear operators defined from $C_{2\\pi}(\\mathbb{R})$ into $C_{2\\pi}(\\mathbb{R}).$","PeriodicalId":45664,"journal":{"name":"Thai Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lambda^2-statistical convergence and its applicationto Korovkin second theorem\",\"authors\":\"Valdete Loku, N. Braha\",\"doi\":\"10.24193/SUBBMATH.2019.4.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the notion of strong $(N, \\\\lambda^2)-$summability to generalize the concept of statistical convergence. We call this new method a $\\\\lambda^2-$statistical convergence and denote by $S_{\\\\lambda^2}$ the set of sequences which are $\\\\lambda^2-$statistically convergent. We find its relation to statistical convergence and strong $(N, \\\\lambda^2)-$summability. We will define a new sequence space and will show that it is Banach space. Also we will prove the second Korovkin type approximation theorem for $\\\\lambda^2$-statistically summability and the rate of $\\\\lambda^2$-statistically summability of a sequence of positive linear operators defined from $C_{2\\\\pi}(\\\\mathbb{R})$ into $C_{2\\\\pi}(\\\\mathbb{R}).$\",\"PeriodicalId\":45664,\"journal\":{\"name\":\"Thai Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thai Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/SUBBMATH.2019.4.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thai Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/SUBBMATH.2019.4.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用$(N, \lambda^2)-$强可和性的概念来推广统计收敛的概念。我们称这种新方法为$\lambda^2-$统计收敛,并用$S_{\lambda^2}$表示$\lambda^2-$统计收敛的序列集。我们发现了它与统计收敛和强大的$(N, \lambda^2)-$可和性的关系。我们将定义一个新的序列空间,并证明它是巴拿赫空间。并证明了从$C_{2\pi}(\mathbb{R})$到的正线性算子序列的$\lambda^2$ -统计可和性和$\lambda^2$ -统计可和率的第二个Korovkin型近似定理 $C_{2\pi}(\mathbb{R}).$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lambda^2-statistical convergence and its applicationto Korovkin second theorem
In this paper, we use the notion of strong $(N, \lambda^2)-$summability to generalize the concept of statistical convergence. We call this new method a $\lambda^2-$statistical convergence and denote by $S_{\lambda^2}$ the set of sequences which are $\lambda^2-$statistically convergent. We find its relation to statistical convergence and strong $(N, \lambda^2)-$summability. We will define a new sequence space and will show that it is Banach space. Also we will prove the second Korovkin type approximation theorem for $\lambda^2$-statistically summability and the rate of $\lambda^2$-statistically summability of a sequence of positive linear operators defined from $C_{2\pi}(\mathbb{R})$ into $C_{2\pi}(\mathbb{R}).$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
0
期刊介绍: Thai Journal of Mathematics (TJM) is a peer-reviewed, open access international journal publishing original research works of high standard in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信