J. Antony, Georgene Singh, B. Yadav, M. Abraham, S. George
{"title":"滩椅位对肩部手术患者脑血流影响的初步观察研究","authors":"J. Antony, Georgene Singh, B. Yadav, M. Abraham, S. George","doi":"10.1055/s-0041-1732830","DOIUrl":null,"url":null,"abstract":"Abstract Background Hypotension and cerebral hypoperfusion, commonly encountered in beach-chair position under general anesthesia, carry the risk of neurologic complications. There is a paucity of data on monitoring cerebral perfusion. Our objective was to compare the mean arterial pressure (MAP) and middle cerebral artery velocity (Vmca) in the supine and beach-chair position and estimate its correlation during hypotension. Materials and Methods Twenty ASA class I and II patients undergoing elective shoulder surgery in beach-chair position were included in the study. MAP was measured invasively with the pressure transducer leveled to the phlebostatic axis. Vmca was measured with a 2 MHz transcranial Doppler (TCD) probe through the temporal window. Both MAP and Vmca were measured at baseline after anesthetic induction in the supine position (BL), on assuming the beach-chair position (AP), at steady-state hemodynamics in beach-chair position (P1), whenever there was a drop in MAP > 20% (P2), and on the restoration of MAP (P3). Results A mean decrease in MAP and Vmca by 24.76% and 27.96%, respectively, from supine to beach-chair position with a significant linear correlation between MAP and Vmca along with a Pearsons’ coefficient of 0.77 was seen. A change in MAP of 1 mm of Hg resulted in a change in Vmca by 0.53 cm/sec (p < 0.05). Conclusion A significant decrease in MAP and Vmca was observed in the beach-chair position. TCD could be used as a point-of-care noninvasive technique to reliably assess cerebral perfusion.","PeriodicalId":16574,"journal":{"name":"Journal of Neuroanaesthesiology and Critical Care","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Beach-Chair Position on Cerebral Blood Flow in Patients Undergoing Shoulder Surgery—A Preliminary Observational Study\",\"authors\":\"J. Antony, Georgene Singh, B. Yadav, M. Abraham, S. George\",\"doi\":\"10.1055/s-0041-1732830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background Hypotension and cerebral hypoperfusion, commonly encountered in beach-chair position under general anesthesia, carry the risk of neurologic complications. There is a paucity of data on monitoring cerebral perfusion. Our objective was to compare the mean arterial pressure (MAP) and middle cerebral artery velocity (Vmca) in the supine and beach-chair position and estimate its correlation during hypotension. Materials and Methods Twenty ASA class I and II patients undergoing elective shoulder surgery in beach-chair position were included in the study. MAP was measured invasively with the pressure transducer leveled to the phlebostatic axis. Vmca was measured with a 2 MHz transcranial Doppler (TCD) probe through the temporal window. Both MAP and Vmca were measured at baseline after anesthetic induction in the supine position (BL), on assuming the beach-chair position (AP), at steady-state hemodynamics in beach-chair position (P1), whenever there was a drop in MAP > 20% (P2), and on the restoration of MAP (P3). Results A mean decrease in MAP and Vmca by 24.76% and 27.96%, respectively, from supine to beach-chair position with a significant linear correlation between MAP and Vmca along with a Pearsons’ coefficient of 0.77 was seen. A change in MAP of 1 mm of Hg resulted in a change in Vmca by 0.53 cm/sec (p < 0.05). Conclusion A significant decrease in MAP and Vmca was observed in the beach-chair position. TCD could be used as a point-of-care noninvasive technique to reliably assess cerebral perfusion.\",\"PeriodicalId\":16574,\"journal\":{\"name\":\"Journal of Neuroanaesthesiology and Critical Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroanaesthesiology and Critical Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1732830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroanaesthesiology and Critical Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1732830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Effect of Beach-Chair Position on Cerebral Blood Flow in Patients Undergoing Shoulder Surgery—A Preliminary Observational Study
Abstract Background Hypotension and cerebral hypoperfusion, commonly encountered in beach-chair position under general anesthesia, carry the risk of neurologic complications. There is a paucity of data on monitoring cerebral perfusion. Our objective was to compare the mean arterial pressure (MAP) and middle cerebral artery velocity (Vmca) in the supine and beach-chair position and estimate its correlation during hypotension. Materials and Methods Twenty ASA class I and II patients undergoing elective shoulder surgery in beach-chair position were included in the study. MAP was measured invasively with the pressure transducer leveled to the phlebostatic axis. Vmca was measured with a 2 MHz transcranial Doppler (TCD) probe through the temporal window. Both MAP and Vmca were measured at baseline after anesthetic induction in the supine position (BL), on assuming the beach-chair position (AP), at steady-state hemodynamics in beach-chair position (P1), whenever there was a drop in MAP > 20% (P2), and on the restoration of MAP (P3). Results A mean decrease in MAP and Vmca by 24.76% and 27.96%, respectively, from supine to beach-chair position with a significant linear correlation between MAP and Vmca along with a Pearsons’ coefficient of 0.77 was seen. A change in MAP of 1 mm of Hg resulted in a change in Vmca by 0.53 cm/sec (p < 0.05). Conclusion A significant decrease in MAP and Vmca was observed in the beach-chair position. TCD could be used as a point-of-care noninvasive technique to reliably assess cerebral perfusion.