具有Beddington-DeAngelis功能响应的随机延迟捕食-食饵系统动力学

Mengwei Li, Yuanfu Shao, Yafei Yang
{"title":"具有Beddington-DeAngelis功能响应的随机延迟捕食-食饵系统动力学","authors":"Mengwei Li, Yuanfu Shao, Yafei Yang","doi":"10.4236/ijmnta.2019.84007","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a stochastic predator-prey system with Beddington-DeAngelis functional response and time delay. Firstly, we show that this system has a unique positive solution as this is essential in any population dynamics model. Secondly, the validity of the stochastic system is guaranteed by stochastic ultimate boundedness of the analyzed solution. Finally, by constructing suitable Lyapunov functions, the asymptotic moment estimation of the solution was given. These properties of the solution can provide theoretical support for biological resource management.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a Stochastic Delayed Predator-Prey System with Beddington-DeAngelis Functional Response\",\"authors\":\"Mengwei Li, Yuanfu Shao, Yafei Yang\",\"doi\":\"10.4236/ijmnta.2019.84007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with a stochastic predator-prey system with Beddington-DeAngelis functional response and time delay. Firstly, we show that this system has a unique positive solution as this is essential in any population dynamics model. Secondly, the validity of the stochastic system is guaranteed by stochastic ultimate boundedness of the analyzed solution. Finally, by constructing suitable Lyapunov functions, the asymptotic moment estimation of the solution was given. These properties of the solution can provide theoretical support for biological resource management.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ijmnta.2019.84007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ijmnta.2019.84007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有Beddington-DeAngelis函数响应和时滞的随机捕食系统。首先,我们证明了这个系统有一个唯一的正解,这在任何种群动力学模型中都是必不可少的。其次,通过分析解的随机极限有界性来保证随机系统的有效性。最后,通过构造合适的Lyapunov函数,给出了解的渐近矩估计。该溶液的这些特性可为生物资源管理提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a Stochastic Delayed Predator-Prey System with Beddington-DeAngelis Functional Response
This paper is concerned with a stochastic predator-prey system with Beddington-DeAngelis functional response and time delay. Firstly, we show that this system has a unique positive solution as this is essential in any population dynamics model. Secondly, the validity of the stochastic system is guaranteed by stochastic ultimate boundedness of the analyzed solution. Finally, by constructing suitable Lyapunov functions, the asymptotic moment estimation of the solution was given. These properties of the solution can provide theoretical support for biological resource management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信