{"title":"具有平方不可和相互作用的远程渗流模型的截断","authors":"Alberto M. Campos, B. D. Lima","doi":"10.30757/alea.v19-41","DOIUrl":null,"url":null,"abstract":"We consider some problems related to the truncation question in long-range percolation. It is given probabilities that certain long-range oriented bonds are open; assuming that this probabilities are not summable, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. This question is still open if the set of vertices is $\\Z^2$. We give some conditions in which the answer is affirmative. One of these results generalize the previous result in [Alves, Hilario, de Lima, Valesin, Journ. Stat. Phys. {\\bf 122}, 972 (2017)].","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Truncation of long-range percolation models with square non-summable interactions\",\"authors\":\"Alberto M. Campos, B. D. Lima\",\"doi\":\"10.30757/alea.v19-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider some problems related to the truncation question in long-range percolation. It is given probabilities that certain long-range oriented bonds are open; assuming that this probabilities are not summable, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. This question is still open if the set of vertices is $\\\\Z^2$. We give some conditions in which the answer is affirmative. One of these results generalize the previous result in [Alves, Hilario, de Lima, Valesin, Journ. Stat. Phys. {\\\\bf 122}, 972 (2017)].\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-41\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-41","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Truncation of long-range percolation models with square non-summable interactions
We consider some problems related to the truncation question in long-range percolation. It is given probabilities that certain long-range oriented bonds are open; assuming that this probabilities are not summable, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. This question is still open if the set of vertices is $\Z^2$. We give some conditions in which the answer is affirmative. One of these results generalize the previous result in [Alves, Hilario, de Lima, Valesin, Journ. Stat. Phys. {\bf 122}, 972 (2017)].
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.