基于非线性核模的相关数据回归

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Wang
{"title":"基于非线性核模的相关数据回归","authors":"Tao Wang","doi":"10.1111/jtsa.12700","DOIUrl":null,"url":null,"abstract":"<p>Under stationary <math>\n <mrow>\n <mi>α</mi>\n </mrow></math>-mixing dependent samples, we in this article develop a novel nonlinear regression based on mode value for time series sequences to achieve robustness without sacrificing estimation efficiency. The estimation process is built on a kernel-based objective function with a constant bandwidth (tuning parameter) that is independent of sample size and can be adjusted to maximize efficiency. The asymptotic distribution of the resultant estimator is established under suitable conditions, and the convergence rate is demonstrated to be the same as that in nonlinear mean regression. To numerically estimate the kernel mode-based regression, we develop a modified modal-expectation-maximization algorithm in conjunction with Taylor expansion. A robust Wald-type test statistic derived from the resulting estimator is also provided, along with its asymptotic distribution for the null and alternative hypotheses. The local robustness of the proposed estimation procedure is studied using influence function analysis, and the good finite sample performance of the newly suggested model is verified through Monte Carlo simulations. We finally combine the recommended kernel mode-based regression with neural networks to develop a kernel mode-based neural networks model, the performance of which is evidenced by an empirical examination of exchange rate prediction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear kernel mode-based regression for dependent data\",\"authors\":\"Tao Wang\",\"doi\":\"10.1111/jtsa.12700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Under stationary <math>\\n <mrow>\\n <mi>α</mi>\\n </mrow></math>-mixing dependent samples, we in this article develop a novel nonlinear regression based on mode value for time series sequences to achieve robustness without sacrificing estimation efficiency. The estimation process is built on a kernel-based objective function with a constant bandwidth (tuning parameter) that is independent of sample size and can be adjusted to maximize efficiency. The asymptotic distribution of the resultant estimator is established under suitable conditions, and the convergence rate is demonstrated to be the same as that in nonlinear mean regression. To numerically estimate the kernel mode-based regression, we develop a modified modal-expectation-maximization algorithm in conjunction with Taylor expansion. A robust Wald-type test statistic derived from the resulting estimator is also provided, along with its asymptotic distribution for the null and alternative hypotheses. The local robustness of the proposed estimation procedure is studied using influence function analysis, and the good finite sample performance of the newly suggested model is verified through Monte Carlo simulations. We finally combine the recommended kernel mode-based regression with neural networks to develop a kernel mode-based neural networks model, the performance of which is evidenced by an empirical examination of exchange rate prediction.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12700\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12700","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在静态 α 混合依赖样本条件下,我们在本文中开发了一种基于时间序列模值的新型非线性回归方法,以在不牺牲估计效率的情况下实现稳健性。估计过程建立在一个基于核的目标函数上,该目标函数具有与样本大小无关的恒定带宽(调整参数),可通过调整使效率最大化。在合适的条件下,建立了结果估计器的渐近分布,并证明其收敛速率与非线性均值回归的收敛速率相同。为了对基于核模的回归进行数值估计,我们结合泰勒扩展开发了一种改进的模态期望最大化算法。此外,我们还提供了由估计结果得出的稳健沃尔德型检验统计量,以及它在零假设和备择假设下的渐近分布。利用影响函数分析研究了所建议的估计程序的局部稳健性,并通过蒙特卡罗模拟验证了新建议模型的良好有限样本性能。最后,我们将推荐的基于核模式的回归与神经网络相结合,建立了基于核模式的神经网络模型,并通过汇率预测的实证检验证明了该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear kernel mode-based regression for dependent data

Under stationary α -mixing dependent samples, we in this article develop a novel nonlinear regression based on mode value for time series sequences to achieve robustness without sacrificing estimation efficiency. The estimation process is built on a kernel-based objective function with a constant bandwidth (tuning parameter) that is independent of sample size and can be adjusted to maximize efficiency. The asymptotic distribution of the resultant estimator is established under suitable conditions, and the convergence rate is demonstrated to be the same as that in nonlinear mean regression. To numerically estimate the kernel mode-based regression, we develop a modified modal-expectation-maximization algorithm in conjunction with Taylor expansion. A robust Wald-type test statistic derived from the resulting estimator is also provided, along with its asymptotic distribution for the null and alternative hypotheses. The local robustness of the proposed estimation procedure is studied using influence function analysis, and the good finite sample performance of the newly suggested model is verified through Monte Carlo simulations. We finally combine the recommended kernel mode-based regression with neural networks to develop a kernel mode-based neural networks model, the performance of which is evidenced by an empirical examination of exchange rate prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信