spde的边界重整化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M'at'e Gerencs'er, Martin Hairer
{"title":"spde的边界重整化","authors":"M'at'e Gerencs'er, Martin Hairer","doi":"10.1080/03605302.2022.2109173","DOIUrl":null,"url":null,"abstract":"Abstract We consider the continuum parabolic Anderson model (PAM) and the dynamical equation on the 3-dimensional cube with boundary conditions. While the Dirichlet solution theories are relatively standard, the case of Neumann/Robin boundary conditions gives rise to a divergent boundary renormalisation. Furthermore for a ‘boundary triviality’ result is obtained: if one approximates the equation with Neumann boundary conditions and the usual bulk renormalisation, then the limiting process coincides with the one obtained using Dirichlet boundary conditions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boundary renormalisation of SPDEs\",\"authors\":\"M'at'e Gerencs'er, Martin Hairer\",\"doi\":\"10.1080/03605302.2022.2109173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the continuum parabolic Anderson model (PAM) and the dynamical equation on the 3-dimensional cube with boundary conditions. While the Dirichlet solution theories are relatively standard, the case of Neumann/Robin boundary conditions gives rise to a divergent boundary renormalisation. Furthermore for a ‘boundary triviality’ result is obtained: if one approximates the equation with Neumann boundary conditions and the usual bulk renormalisation, then the limiting process coincides with the one obtained using Dirichlet boundary conditions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2109173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2109173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们考虑了连续抛物型Anderson模型(PAM)和具有边界条件的三维立方体上的动力学方程。虽然狄利克雷解理论是相对标准的,但Neumann/Robin边界条件的情况引起了发散边界的重新规范化。此外,得到了“边界平凡性”的结果:如果用Neumann边界条件和通常的整体重规范化近似方程,则极限过程与使用Dirichlet边界条件获得的极限过程一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary renormalisation of SPDEs
Abstract We consider the continuum parabolic Anderson model (PAM) and the dynamical equation on the 3-dimensional cube with boundary conditions. While the Dirichlet solution theories are relatively standard, the case of Neumann/Robin boundary conditions gives rise to a divergent boundary renormalisation. Furthermore for a ‘boundary triviality’ result is obtained: if one approximates the equation with Neumann boundary conditions and the usual bulk renormalisation, then the limiting process coincides with the one obtained using Dirichlet boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信