{"title":"双线性映射的Gleason–Kahane–Żelazko定理","authors":"A. Zivari-kazempour","doi":"10.2478/amsil-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Let A and B be two unital Banach algebras and 𝔘 = A × B. We prove that the bilinear mapping φ: 𝔘 → ℂ is a bi-Jordan homomorphism if and only if φ is unital, invertibility preserving and jointly continuous. Additionally, if A is commutative, then φ is a bi-homomorphism.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"228 - 237"},"PeriodicalIF":0.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gleason–Kahane–Żelazko Theorem for Bilinear Maps\",\"authors\":\"A. Zivari-kazempour\",\"doi\":\"10.2478/amsil-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let A and B be two unital Banach algebras and 𝔘 = A × B. We prove that the bilinear mapping φ: 𝔘 → ℂ is a bi-Jordan homomorphism if and only if φ is unital, invertibility preserving and jointly continuous. Additionally, if A is commutative, then φ is a bi-homomorphism.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"228 - 237\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要设A和B是两个一元Banach代数,且𝔘= A × B,证明了双线性映射φ:𝔘→是双约当同态,当且仅当φ是一元、保持可逆性且联合连续的。另外,如果A是可交换的,则φ是双同态。
Abstract Let A and B be two unital Banach algebras and 𝔘 = A × B. We prove that the bilinear mapping φ: 𝔘 → ℂ is a bi-Jordan homomorphism if and only if φ is unital, invertibility preserving and jointly continuous. Additionally, if A is commutative, then φ is a bi-homomorphism.