Weijia Han, Mei Ding, Shuang Liu, Yu Chen, Zhongping Duan
{"title":"三维再细胞化组织工程评价:用于肝保护剂研究的药物性肝毒性模型","authors":"Weijia Han, Mei Ding, Shuang Liu, Yu Chen, Zhongping Duan","doi":"10.1080/15376516.2019.1646371","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Application of hepatoprotectants, such as drugs or cytokines, can reduce drug-induced hepatotoxicity (DIH). Due to species-specific differences and abnormal cell polarity and drug-metabolizing enzymes (DMEs), <i>in vivo</i> animal models and <i>in vitro</i> 2D plastic dishes are not good DIH models. The aim of this study was to evaluate whether 3D re-cellularized liver is a sensitive, accurate and efficient DIH model for evaluation of hepatoprotectants. <b>Methods:</b> 2D plastic dishes and 3D decellular liver scaffolds were perfused with HepG2 cells or augmenter of liver regeneration (ALR)-HepG2 cells. These two cell lines were exposed to 4 μM troglitazone (TRO) or 20 μM diclofenac sodium (DIC) on day 8. DME-related genes were analyzed by quantitative reverse transcription polymerase chain reaction; morphological images were revealed by immunohistochemistry, scanning electron microscopy, transmission electron microscopy, and hematoxylin and eosin staining. <b>Results:</b> DME activity and cell polarity were retained and lower doses of TRO and DIC led to DIH in 3D re-cellularized liver. This DIH model reflected the protective effects and mechanism of ALR, which is one of the hepatoprotectants. ALR reduced mitochondrial damage, decreased transaminase level, and alleviated inflammation in TRO-DIH and DIC-DIH. Our re-cellularized liver lobe also showed the effect of ALR in suppressing expression of DMEs. <b>Conclusions:</b> Drug-induced 3D re-cellularized tissue engineering is a sensitive, accurate, and efficient DIH model for evaluation of hepatoprotectants.</p>","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"29 1","pages":"654-664"},"PeriodicalIF":2.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2019.1646371","citationCount":"4","resultStr":"{\"title\":\"Evaluation of 3D re-cellularized tissue engineering: a drug-induced hepatotoxicity model for hepatoprotectant research.\",\"authors\":\"Weijia Han, Mei Ding, Shuang Liu, Yu Chen, Zhongping Duan\",\"doi\":\"10.1080/15376516.2019.1646371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Application of hepatoprotectants, such as drugs or cytokines, can reduce drug-induced hepatotoxicity (DIH). Due to species-specific differences and abnormal cell polarity and drug-metabolizing enzymes (DMEs), <i>in vivo</i> animal models and <i>in vitro</i> 2D plastic dishes are not good DIH models. The aim of this study was to evaluate whether 3D re-cellularized liver is a sensitive, accurate and efficient DIH model for evaluation of hepatoprotectants. <b>Methods:</b> 2D plastic dishes and 3D decellular liver scaffolds were perfused with HepG2 cells or augmenter of liver regeneration (ALR)-HepG2 cells. These two cell lines were exposed to 4 μM troglitazone (TRO) or 20 μM diclofenac sodium (DIC) on day 8. DME-related genes were analyzed by quantitative reverse transcription polymerase chain reaction; morphological images were revealed by immunohistochemistry, scanning electron microscopy, transmission electron microscopy, and hematoxylin and eosin staining. <b>Results:</b> DME activity and cell polarity were retained and lower doses of TRO and DIC led to DIH in 3D re-cellularized liver. This DIH model reflected the protective effects and mechanism of ALR, which is one of the hepatoprotectants. ALR reduced mitochondrial damage, decreased transaminase level, and alleviated inflammation in TRO-DIH and DIC-DIH. Our re-cellularized liver lobe also showed the effect of ALR in suppressing expression of DMEs. <b>Conclusions:</b> Drug-induced 3D re-cellularized tissue engineering is a sensitive, accurate, and efficient DIH model for evaluation of hepatoprotectants.</p>\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"29 1\",\"pages\":\"654-664\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15376516.2019.1646371\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2019.1646371\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2019.1646371","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Evaluation of 3D re-cellularized tissue engineering: a drug-induced hepatotoxicity model for hepatoprotectant research.
Background: Application of hepatoprotectants, such as drugs or cytokines, can reduce drug-induced hepatotoxicity (DIH). Due to species-specific differences and abnormal cell polarity and drug-metabolizing enzymes (DMEs), in vivo animal models and in vitro 2D plastic dishes are not good DIH models. The aim of this study was to evaluate whether 3D re-cellularized liver is a sensitive, accurate and efficient DIH model for evaluation of hepatoprotectants. Methods: 2D plastic dishes and 3D decellular liver scaffolds were perfused with HepG2 cells or augmenter of liver regeneration (ALR)-HepG2 cells. These two cell lines were exposed to 4 μM troglitazone (TRO) or 20 μM diclofenac sodium (DIC) on day 8. DME-related genes were analyzed by quantitative reverse transcription polymerase chain reaction; morphological images were revealed by immunohistochemistry, scanning electron microscopy, transmission electron microscopy, and hematoxylin and eosin staining. Results: DME activity and cell polarity were retained and lower doses of TRO and DIC led to DIH in 3D re-cellularized liver. This DIH model reflected the protective effects and mechanism of ALR, which is one of the hepatoprotectants. ALR reduced mitochondrial damage, decreased transaminase level, and alleviated inflammation in TRO-DIH and DIC-DIH. Our re-cellularized liver lobe also showed the effect of ALR in suppressing expression of DMEs. Conclusions: Drug-induced 3D re-cellularized tissue engineering is a sensitive, accurate, and efficient DIH model for evaluation of hepatoprotectants.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.