{"title":"一类退化奇异的monge - ampatire方程","authors":"H. Jian, You Li, Xushan Tu","doi":"10.4310/maa.2021.v28.n3.a8","DOIUrl":null,"url":null,"abstract":"In this paper we shall prove the existence, uniqueness and global H$\\ddot{o}$lder continuity for the Dirichlet problem of a class of Monge-Ampere type equations which may be degenerate and singular on the boundary of convex domains. \nWe will establish a relation of the H$\\ddot{o}$lder exponent for the solutions with the convexity for the domains.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On a class of degenerate and singular Monge–Ampère equations\",\"authors\":\"H. Jian, You Li, Xushan Tu\",\"doi\":\"10.4310/maa.2021.v28.n3.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we shall prove the existence, uniqueness and global H$\\\\ddot{o}$lder continuity for the Dirichlet problem of a class of Monge-Ampere type equations which may be degenerate and singular on the boundary of convex domains. \\nWe will establish a relation of the H$\\\\ddot{o}$lder exponent for the solutions with the convexity for the domains.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2021.v28.n3.a8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2021.v28.n3.a8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On a class of degenerate and singular Monge–Ampère equations
In this paper we shall prove the existence, uniqueness and global H$\ddot{o}$lder continuity for the Dirichlet problem of a class of Monge-Ampere type equations which may be degenerate and singular on the boundary of convex domains.
We will establish a relation of the H$\ddot{o}$lder exponent for the solutions with the convexity for the domains.