求解时滞捕食-食饵模型的改进欧拉多项式与伯努利多项式的搭配方法

IF 1.4 Q2 MATHEMATICS, APPLIED
B. Basirat, H. Elahi
{"title":"求解时滞捕食-食饵模型的改进欧拉多项式与伯努利多项式的搭配方法","authors":"B. Basirat, H. Elahi","doi":"10.1155/2020/9176784","DOIUrl":null,"url":null,"abstract":"This paper deals with an approach to obtaining the numerical solution of the Lotka–Volterra predator-prey models with discrete delay using Euler polynomials connected with Bernoulli ones. By using the Euler polynomials connected with Bernoulli ones and collocation points, this method transforms the predator-prey model into a matrix equation. The main characteristic of this approach is that it reduces the predator-prey model to a system of algebraic equations, which greatly simplifies the problem. For these models, the explicit formula determining the stability and the direction is given. Numerical examples illustrate the reliability and efficiency of the proposed scheme.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9176784","citationCount":"2","resultStr":"{\"title\":\"An Improved Collocation Approach of Euler Polynomials Connected with Bernoulli Ones for Solving Predator-Prey Models with Time Lag\",\"authors\":\"B. Basirat, H. Elahi\",\"doi\":\"10.1155/2020/9176784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with an approach to obtaining the numerical solution of the Lotka–Volterra predator-prey models with discrete delay using Euler polynomials connected with Bernoulli ones. By using the Euler polynomials connected with Bernoulli ones and collocation points, this method transforms the predator-prey model into a matrix equation. The main characteristic of this approach is that it reduces the predator-prey model to a system of algebraic equations, which greatly simplifies the problem. For these models, the explicit formula determining the stability and the direction is given. Numerical examples illustrate the reliability and efficiency of the proposed scheme.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/9176784\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/9176784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9176784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了一种利用与伯努利多项式相连的欧拉多项式获得离散时滞Lotka–Volterra捕食-被捕食模型数值解的方法。该方法利用与伯努利多项式和配置点相连的欧拉多项式,将捕食-被捕食模型转化为矩阵方程。该方法的主要特点是将捕食-被捕食模型简化为代数方程组,极大地简化了问题。对于这些模型,给出了确定稳定性和方向的显式公式。数值算例说明了该方案的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Collocation Approach of Euler Polynomials Connected with Bernoulli Ones for Solving Predator-Prey Models with Time Lag
This paper deals with an approach to obtaining the numerical solution of the Lotka–Volterra predator-prey models with discrete delay using Euler polynomials connected with Bernoulli ones. By using the Euler polynomials connected with Bernoulli ones and collocation points, this method transforms the predator-prey model into a matrix equation. The main characteristic of this approach is that it reduces the predator-prey model to a system of algebraic equations, which greatly simplifies the problem. For these models, the explicit formula determining the stability and the direction is given. Numerical examples illustrate the reliability and efficiency of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信