边界点附近节点对二维时间分数阶扩散波动方程六阶紧致有限差分ADI格式稳定性分析的影响

IF 0.3 Q4 MATHEMATICS
Z. Soori, A. Aminataei
{"title":"边界点附近节点对二维时间分数阶扩散波动方程六阶紧致有限差分ADI格式稳定性分析的影响","authors":"Z. Soori,&nbsp;A. Aminataei","doi":"10.1016/j.trmi.2018.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the aim is to present a high-order compact alternating direction implicit (ADI) scheme for the two-dimensional time fractional diffusion-wave (FDW) equation. The time fractional derivative which has been described in the Caputo’s sense is approximated by a scheme of order <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn></math></span> and the space derivatives are discretized with a sixth-order compact procedure. The solvability, stability and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the scheme are proved. Numerical results are provided to verify the accuracy and efficiency of the proposed method of solution. The sixth-order accuracy in the space directions has not been achieved in previously studied schemes.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 582-605"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.03.003","citationCount":"4","resultStr":"{\"title\":\"Effect of the nodes near boundary points on the stability analysis of sixth-order compact finite difference ADI scheme for the two-dimensional time fractional diffusion-wave equation\",\"authors\":\"Z. Soori,&nbsp;A. Aminataei\",\"doi\":\"10.1016/j.trmi.2018.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the aim is to present a high-order compact alternating direction implicit (ADI) scheme for the two-dimensional time fractional diffusion-wave (FDW) equation. The time fractional derivative which has been described in the Caputo’s sense is approximated by a scheme of order <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn></math></span> and the space derivatives are discretized with a sixth-order compact procedure. The solvability, stability and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the scheme are proved. Numerical results are provided to verify the accuracy and efficiency of the proposed method of solution. The sixth-order accuracy in the space directions has not been achieved in previously studied schemes.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 3\",\"pages\":\"Pages 582-605\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.03.003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217301150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是给出二维时间分数扩散波方程的一种高阶紧致交替方向隐式格式。用一个O(τ3−α), 1<α<2阶格式逼近了在Caputo意义上描述的时间分数阶导数,并用一个六阶紧化过程离散了空间导数。证明了该方案的可解性、稳定性和H1范数。数值结果验证了所提求解方法的准确性和有效性。在以往的研究方案中,空间方向的六阶精度尚未达到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the nodes near boundary points on the stability analysis of sixth-order compact finite difference ADI scheme for the two-dimensional time fractional diffusion-wave equation

In this paper, the aim is to present a high-order compact alternating direction implicit (ADI) scheme for the two-dimensional time fractional diffusion-wave (FDW) equation. The time fractional derivative which has been described in the Caputo’s sense is approximated by a scheme of order O(τ3α), 1<α<2 and the space derivatives are discretized with a sixth-order compact procedure. The solvability, stability and H1 norm of the scheme are proved. Numerical results are provided to verify the accuracy and efficiency of the proposed method of solution. The sixth-order accuracy in the space directions has not been achieved in previously studied schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信