{"title":"边界点附近节点对二维时间分数阶扩散波动方程六阶紧致有限差分ADI格式稳定性分析的影响","authors":"Z. Soori, A. Aminataei","doi":"10.1016/j.trmi.2018.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the aim is to present a high-order compact alternating direction implicit (ADI) scheme for the two-dimensional time fractional diffusion-wave (FDW) equation. The time fractional derivative which has been described in the Caputo’s sense is approximated by a scheme of order <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span>, <span><math><mn>1</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></math></span> and the space derivatives are discretized with a sixth-order compact procedure. The solvability, stability and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the scheme are proved. Numerical results are provided to verify the accuracy and efficiency of the proposed method of solution. The sixth-order accuracy in the space directions has not been achieved in previously studied schemes.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 582-605"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.03.003","citationCount":"4","resultStr":"{\"title\":\"Effect of the nodes near boundary points on the stability analysis of sixth-order compact finite difference ADI scheme for the two-dimensional time fractional diffusion-wave equation\",\"authors\":\"Z. Soori, A. Aminataei\",\"doi\":\"10.1016/j.trmi.2018.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the aim is to present a high-order compact alternating direction implicit (ADI) scheme for the two-dimensional time fractional diffusion-wave (FDW) equation. The time fractional derivative which has been described in the Caputo’s sense is approximated by a scheme of order <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span>, <span><math><mn>1</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></math></span> and the space derivatives are discretized with a sixth-order compact procedure. The solvability, stability and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the scheme are proved. Numerical results are provided to verify the accuracy and efficiency of the proposed method of solution. The sixth-order accuracy in the space directions has not been achieved in previously studied schemes.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 3\",\"pages\":\"Pages 582-605\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.03.003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217301150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Effect of the nodes near boundary points on the stability analysis of sixth-order compact finite difference ADI scheme for the two-dimensional time fractional diffusion-wave equation
In this paper, the aim is to present a high-order compact alternating direction implicit (ADI) scheme for the two-dimensional time fractional diffusion-wave (FDW) equation. The time fractional derivative which has been described in the Caputo’s sense is approximated by a scheme of order , and the space derivatives are discretized with a sixth-order compact procedure. The solvability, stability and norm of the scheme are proved. Numerical results are provided to verify the accuracy and efficiency of the proposed method of solution. The sixth-order accuracy in the space directions has not been achieved in previously studied schemes.