振动过程边界矢量控制非线性优化问题的可解性

IF 0.7 Q2 MATHEMATICS
E. Abdyldaeva, A. Kerimbekov, M.T. Zhaparov
{"title":"振动过程边界矢量控制非线性优化问题的可解性","authors":"E. Abdyldaeva, A. Kerimbekov, M.T. Zhaparov","doi":"10.31489/2023m1/5-13","DOIUrl":null,"url":null,"abstract":"In the paper, the solvability of the nonlinear boundary optimization problem has been investigated for the oscillation processes, described by the integro-differential equation in partial derivatives with Fredholm integral operator. It has been established that the components of the boundary vector control are defined as a solution to a system of nonlinear integral equations of a specific form, and the equations of this system have the property of equal relations. An algorithm for constructing a solution to the problem of nonlinear optimization has been developed.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solvability of a nonlinear optimization problem with boundary vector control of oscillatory processes\",\"authors\":\"E. Abdyldaeva, A. Kerimbekov, M.T. Zhaparov\",\"doi\":\"10.31489/2023m1/5-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, the solvability of the nonlinear boundary optimization problem has been investigated for the oscillation processes, described by the integro-differential equation in partial derivatives with Fredholm integral operator. It has been established that the components of the boundary vector control are defined as a solution to a system of nonlinear integral equations of a specific form, and the equations of this system have the property of equal relations. An algorithm for constructing a solution to the problem of nonlinear optimization has been developed.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m1/5-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m1/5-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用Fredholm积分算子的偏导数积分微分方程描述的振荡过程的非线性边界优化问题的可解性。已经证明,边界矢量控制的分量被定义为特定形式的非线性积分方程组的解,并且该系统的方程具有相等关系的性质。提出了一种求解非线性优化问题的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the solvability of a nonlinear optimization problem with boundary vector control of oscillatory processes
In the paper, the solvability of the nonlinear boundary optimization problem has been investigated for the oscillation processes, described by the integro-differential equation in partial derivatives with Fredholm integral operator. It has been established that the components of the boundary vector control are defined as a solution to a system of nonlinear integral equations of a specific form, and the equations of this system have the property of equal relations. An algorithm for constructing a solution to the problem of nonlinear optimization has been developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信