摘要用密度泛函理论研究了硅掺杂碳纳米管Si-CNT作为骨质疏松药物BMSF-BENZ的载体

IF 0.9 Q4 PHYSICS, APPLIED
Z. Al-Sawaff, S. Senturk Dalgic, F. Kandemirli
{"title":"摘要用密度泛函理论研究了硅掺杂碳纳米管Si-CNT作为骨质疏松药物BMSF-BENZ的载体","authors":"Z. Al-Sawaff, S. Senturk Dalgic, F. Kandemirli","doi":"10.15446/mo.n65.99010","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the capability of Silicon-Doped Carbon Nanotube (Si-CNT) to detect and adsorb the BMSF-BENZ ((4-Bromo-7-methoxy-1-(2-methoxyethyl)-5-{[3-(methylsulfonyl)phenyl]methyl}-2-[4- (propane-2-))yl)phenyl]-1H-1,3-benzothiazole) molecular. For this purpose, we considered different configurations for adsorbing BMSF-BENZ drugs on the surface of the Si-CNT nanotube. All considered configurations are optimized using the density functional theory (DFT) at the 6-31G∗∗ basis set and B3LYP-B97D level of theory. Then from optimized structures, for each nanoparticle, we selected seven stable locations for the adsorption of BMSF-BENZ in (Br, N8, N9, N58, O35, O41 and S) active atoms on the surface of the selected nanoparticle. The quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG) analysis, and molecular orbital (MO) analysis were also established. The calculated results indicate that the distance between nanotube and drug from the N8 site is lower than from all other locations sites for all investigated complexes, and adsorption of BMSF-BENZ from the N8 site is more favorable for the Si-CNT nanotube. The adsorption energy, hardness, softness, and fermi energy results reveal that the interaction of BMSF-BENZ with Si-CNT is a promising adsorbent for this drug as Adsorption energy Eads of BMSF-BENZ/Si-CNT complexes are (-13.08, -43.50, -17.90, -31.29, -25.57, -16.56, and -28.05) kcal/mol in the gas phase. As well, the appropriate and spontaneous interaction between the BMSF-BENZ drug and Si-CNT nanoparticle was confirmed by investigating the quantum chemical molecular descriptors and solvation Gibbs free energies of all atoms.","PeriodicalId":42463,"journal":{"name":"MOMENTO-Revista de Fisica","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A DENSITY FUNCTIONAL THEORY (DFT) STUDY ON SILICON DOPED CARBON NANOTUBE Si-CNT AS A CARRIER FOR BMSF-BENZ DRUG USED FOR OSTEOPOROSIS DISEASE\",\"authors\":\"Z. Al-Sawaff, S. Senturk Dalgic, F. Kandemirli\",\"doi\":\"10.15446/mo.n65.99010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate the capability of Silicon-Doped Carbon Nanotube (Si-CNT) to detect and adsorb the BMSF-BENZ ((4-Bromo-7-methoxy-1-(2-methoxyethyl)-5-{[3-(methylsulfonyl)phenyl]methyl}-2-[4- (propane-2-))yl)phenyl]-1H-1,3-benzothiazole) molecular. For this purpose, we considered different configurations for adsorbing BMSF-BENZ drugs on the surface of the Si-CNT nanotube. All considered configurations are optimized using the density functional theory (DFT) at the 6-31G∗∗ basis set and B3LYP-B97D level of theory. Then from optimized structures, for each nanoparticle, we selected seven stable locations for the adsorption of BMSF-BENZ in (Br, N8, N9, N58, O35, O41 and S) active atoms on the surface of the selected nanoparticle. The quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG) analysis, and molecular orbital (MO) analysis were also established. The calculated results indicate that the distance between nanotube and drug from the N8 site is lower than from all other locations sites for all investigated complexes, and adsorption of BMSF-BENZ from the N8 site is more favorable for the Si-CNT nanotube. The adsorption energy, hardness, softness, and fermi energy results reveal that the interaction of BMSF-BENZ with Si-CNT is a promising adsorbent for this drug as Adsorption energy Eads of BMSF-BENZ/Si-CNT complexes are (-13.08, -43.50, -17.90, -31.29, -25.57, -16.56, and -28.05) kcal/mol in the gas phase. As well, the appropriate and spontaneous interaction between the BMSF-BENZ drug and Si-CNT nanoparticle was confirmed by investigating the quantum chemical molecular descriptors and solvation Gibbs free energies of all atoms.\",\"PeriodicalId\":42463,\"journal\":{\"name\":\"MOMENTO-Revista de Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOMENTO-Revista de Fisica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/mo.n65.99010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOMENTO-Revista de Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/mo.n65.99010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在研究硅掺杂碳纳米管(Si-CNT)检测和吸附BMSF-BENZ((4-溴-7-甲氧基-1-(2-甲氧基乙基)-5-{[3-(甲基磺酰基)苯基]甲基}-2-[4-(丙烷-2-))基)苯基]- 1h -1,3-苯并噻唑)分子的能力。为此,我们考虑了在Si-CNT纳米管表面吸附BMSF-BENZ药物的不同构型。使用密度泛函理论(DFT)在6-31G * *基集和B3LYP-B97D理论水平上对所有考虑的构型进行优化。然后,从优化后的结构中,对每个纳米颗粒选择7个稳定的位置来吸附BMSF-BENZ在纳米颗粒表面的(Br, N8, N9, N58, O35, O41和S)活性原子。建立了分子中原子的量子理论(QTAIM)、还原密度梯度(RDG)分析和分子轨道(MO)分析。计算结果表明,纳米管与药物之间的距离小于N8位点,且BMSF-BENZ对N8位点的吸附更有利于Si-CNT纳米管的吸附。吸附能、硬度、柔软度和费米能结果表明,BMSF-BENZ与Si-CNT相互作用的吸附能Eads在气相中分别为(-13.08,-43.50,-17.90,-31.29,-25.57,-16.56和-28.05)kcal/mol,是一种很有前途的药物吸附剂。此外,通过对原子的量子化学分子描述符和溶剂化吉布斯自由能的研究,证实了BMSF-BENZ药物与Si-CNT纳米粒子之间存在适当的自发相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DENSITY FUNCTIONAL THEORY (DFT) STUDY ON SILICON DOPED CARBON NANOTUBE Si-CNT AS A CARRIER FOR BMSF-BENZ DRUG USED FOR OSTEOPOROSIS DISEASE
This study aims to investigate the capability of Silicon-Doped Carbon Nanotube (Si-CNT) to detect and adsorb the BMSF-BENZ ((4-Bromo-7-methoxy-1-(2-methoxyethyl)-5-{[3-(methylsulfonyl)phenyl]methyl}-2-[4- (propane-2-))yl)phenyl]-1H-1,3-benzothiazole) molecular. For this purpose, we considered different configurations for adsorbing BMSF-BENZ drugs on the surface of the Si-CNT nanotube. All considered configurations are optimized using the density functional theory (DFT) at the 6-31G∗∗ basis set and B3LYP-B97D level of theory. Then from optimized structures, for each nanoparticle, we selected seven stable locations for the adsorption of BMSF-BENZ in (Br, N8, N9, N58, O35, O41 and S) active atoms on the surface of the selected nanoparticle. The quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG) analysis, and molecular orbital (MO) analysis were also established. The calculated results indicate that the distance between nanotube and drug from the N8 site is lower than from all other locations sites for all investigated complexes, and adsorption of BMSF-BENZ from the N8 site is more favorable for the Si-CNT nanotube. The adsorption energy, hardness, softness, and fermi energy results reveal that the interaction of BMSF-BENZ with Si-CNT is a promising adsorbent for this drug as Adsorption energy Eads of BMSF-BENZ/Si-CNT complexes are (-13.08, -43.50, -17.90, -31.29, -25.57, -16.56, and -28.05) kcal/mol in the gas phase. As well, the appropriate and spontaneous interaction between the BMSF-BENZ drug and Si-CNT nanoparticle was confirmed by investigating the quantum chemical molecular descriptors and solvation Gibbs free energies of all atoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MOMENTO-Revista de Fisica
MOMENTO-Revista de Fisica PHYSICS, APPLIED-
CiteScore
1.10
自引率
37.50%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信