泡利群的拓扑分解及其对动力系统的影响

Pub Date : 2021-05-06 DOI:10.1007/s11040-021-09387-1
Fabio Bagarello, Yanga Bavuma, Francesco G. Russo
{"title":"泡利群的拓扑分解及其对动力系统的影响","authors":"Fabio Bagarello,&nbsp;Yanga Bavuma,&nbsp;Francesco G. Russo","doi":"10.1007/s11040-021-09387-1","DOIUrl":null,"url":null,"abstract":"<p>In the present paper we show that it is possible to obtain the well known Pauli group <i>P</i> = 〈<i>X</i>,<i>Y</i>,<i>Z</i> | <i>X</i><sup>2</sup> = <i>Y</i><sup>2</sup> = <i>Z</i><sup>2</sup> =?1,(<i>Y</i> <i>Z</i>)<sup>4</sup> = (<i>Z</i><i>X</i>)<sup>4</sup> = (<i>X</i><i>Y</i> )<sup>4</sup> =?1〉 of order 16 as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere <i>S</i><sup>3</sup>. The first of these spaces of orbits is realized via an action of the quaternion group <i>Q</i><sub>8</sub> on <i>S</i><sup>3</sup>; the second one via an action of the cyclic group of order four <span>\\(\\mathbb {Z}(4)\\)</span> on <i>S</i><sup>3</sup>. We deduce a result of decomposition of <i>P</i> of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11040-021-09387-1","citationCount":"1","resultStr":"{\"title\":\"Topological Decompositions of the Pauli Group and their Influence on Dynamical Systems\",\"authors\":\"Fabio Bagarello,&nbsp;Yanga Bavuma,&nbsp;Francesco G. Russo\",\"doi\":\"10.1007/s11040-021-09387-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present paper we show that it is possible to obtain the well known Pauli group <i>P</i> = 〈<i>X</i>,<i>Y</i>,<i>Z</i> | <i>X</i><sup>2</sup> = <i>Y</i><sup>2</sup> = <i>Z</i><sup>2</sup> =?1,(<i>Y</i> <i>Z</i>)<sup>4</sup> = (<i>Z</i><i>X</i>)<sup>4</sup> = (<i>X</i><i>Y</i> )<sup>4</sup> =?1〉 of order 16 as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere <i>S</i><sup>3</sup>. The first of these spaces of orbits is realized via an action of the quaternion group <i>Q</i><sub>8</sub> on <i>S</i><sup>3</sup>; the second one via an action of the cyclic group of order four <span>\\\\(\\\\mathbb {Z}(4)\\\\)</span> on <i>S</i><sup>3</sup>. We deduce a result of decomposition of <i>P</i> of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11040-021-09387-1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-021-09387-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09387-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们证明了有可能得到众所周知的泡利群P = < X,Y,Z | X2 = Y2 = Z2 =?1,(yz)4 = (zx)4 = (xy)4 =?1 > 16阶作为三维球面S3的两个不同轨道空间的适当商群。第一个轨道空间是通过四元数群Q8对S3的作用实现的;第二个是通过S3上4阶循环基团\(\mathbb {Z}(4)\)的作用。我们推导了拓扑性质P的分解结果,然后结合伪费米子理论,找到了这种分解的一种可能的物理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Topological Decompositions of the Pauli Group and their Influence on Dynamical Systems

In the present paper we show that it is possible to obtain the well known Pauli group P = 〈X,Y,Z | X2 = Y2 = Z2 =?1,(Y Z)4 = (ZX)4 = (XY )4 =?1〉 of order 16 as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere S3. The first of these spaces of orbits is realized via an action of the quaternion group Q8 on S3; the second one via an action of the cyclic group of order four \(\mathbb {Z}(4)\) on S3. We deduce a result of decomposition of P of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信