Menghua Zheng, Keyan Zhi, Jiawen Zeng, Chunwei Tian, Lei You
{"title":"一种用于图像去噪的混合CNN","authors":"Menghua Zheng, Keyan Zhi, Jiawen Zeng, Chunwei Tian, Lei You","doi":"10.37965/jait.2022.0101","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks (CNNs) with strong learning abilities have been used in the field of image super-resolution. However, some CNNs depends on a single deep network to training an image super-resolution model, which will have poor performance in complex screens. To address this problem, we propose a hybrid denoising CNN (HDCNN). HDCNN is composed of a dilated block (DB), RepVGG block (RVB) and feature refinement block (FB), a single convolution. DB combines a dilated convolution, batch normalization (BN), common convolutions, activation function of ReLU to obtain more context information. RVB uses parallel combination of convolution and BN, ReLU to extract complementary width features. FB is used to obtain more accurate information via refining obtained feature from the RVB. A single convolution collaborates a residual learning operation to construct a clean image. These key components make the HDCNN have good performance in image denoising. Experiment shows that the proposed HDCNN enjoys good denoising effect in public datasets. ","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A Hybrid CNN for Image Denoising\",\"authors\":\"Menghua Zheng, Keyan Zhi, Jiawen Zeng, Chunwei Tian, Lei You\",\"doi\":\"10.37965/jait.2022.0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional neural networks (CNNs) with strong learning abilities have been used in the field of image super-resolution. However, some CNNs depends on a single deep network to training an image super-resolution model, which will have poor performance in complex screens. To address this problem, we propose a hybrid denoising CNN (HDCNN). HDCNN is composed of a dilated block (DB), RepVGG block (RVB) and feature refinement block (FB), a single convolution. DB combines a dilated convolution, batch normalization (BN), common convolutions, activation function of ReLU to obtain more context information. RVB uses parallel combination of convolution and BN, ReLU to extract complementary width features. FB is used to obtain more accurate information via refining obtained feature from the RVB. A single convolution collaborates a residual learning operation to construct a clean image. These key components make the HDCNN have good performance in image denoising. Experiment shows that the proposed HDCNN enjoys good denoising effect in public datasets. \",\"PeriodicalId\":70996,\"journal\":{\"name\":\"人工智能技术学报(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"人工智能技术学报(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.37965/jait.2022.0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2022.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep convolutional neural networks (CNNs) with strong learning abilities have been used in the field of image super-resolution. However, some CNNs depends on a single deep network to training an image super-resolution model, which will have poor performance in complex screens. To address this problem, we propose a hybrid denoising CNN (HDCNN). HDCNN is composed of a dilated block (DB), RepVGG block (RVB) and feature refinement block (FB), a single convolution. DB combines a dilated convolution, batch normalization (BN), common convolutions, activation function of ReLU to obtain more context information. RVB uses parallel combination of convolution and BN, ReLU to extract complementary width features. FB is used to obtain more accurate information via refining obtained feature from the RVB. A single convolution collaborates a residual learning operation to construct a clean image. These key components make the HDCNN have good performance in image denoising. Experiment shows that the proposed HDCNN enjoys good denoising effect in public datasets.