{"title":"尼日利亚ikere峡谷大坝上游的水文地貌因素和水动力发电潜力","authors":"Wahab Salau, P. Ifabiyi","doi":"10.19184/GEOSI.V4I1.9511","DOIUrl":null,"url":null,"abstract":"The operation of hydrokinetic turbine depends on river flow and pressure head (∆H) which are of high potential in many parts of Nigeria. This study attempts the analysis of the potential of the area upstream of Ikere Gorge dam for hydrokinetic potential. Soil and Water Assessment Tool (SWAT) was used to determine the hydrological parameters of the sub-basins. Pearson Moment Correlation and linear regression methods were used to find the relationships between morphometric properties and the discharge parameters. Hydrological modeling and statistical computations were done to estimate the theoretical potential of the catchment. The result shows that River Oshe has 9.542 MW, which is the highest potential while River Konsun with 1.161 MW has the lowest potential Pearson Moment Correlation shows that there is strong positive relation of 0.7 between slope and pressure head (∆H) at 0.05 significant levels. The result of the multiple regression show that hydro-geomorphic factors explained 59.1% of the variance in the explanation of hydrokinetic power potential upstream of Ikere gorge dam. \nReferences \nAlaska Center for Energy and Power (ACEP) (2011). Hydrokinetic energy (In-River, Tidal and \nOcean Current), Retrieved from http://energy-alaska.wikidot.com/ on April 20th, 2014 \nAschenbrenner, F. (2008). Innovation on traditional waterwheels for renewable energy // \nPower electronics and motion Control conference, Portoroz, Slovenia, pp.1625 \nBahleda, M., and Hosko, M. A. (2007). Assessment of water power potential and development \nNeeds: Electric power research institute, California \nBhattacharya, A.K., and Bolaji, G.A. (2012). Fluid Flow Interactions in Ogun River, \nInternational Journal of Research and Reviews in Applied Sciences, 2 (2): 22-23. \nElectric Power Research Institute, EPRI (2012). Fish passage through turbine: Application of \nconvectional hydropower data to hydrokinetic technology Palo Alto, USA \nEnergy Information Administration (2014). Retrieved on Dec. 20th, 2014 from \nwww.eia.gov/electricity \nEpler, J. (2010). Tidal Resources characteristics from acoustics Doppler current profiler, An \nUnpublished M.Sc.Thesis, Department of Mechanical Engineering, University of Washington, USA \nEvan, M. (2012). Hydrokinetic Power: An Analysis of Its Performance and Potential in the Roza \nand Kittas Canals. An Unpublished M. Sc. Thesis, the Evergreen State College, USA \nIfabiyi, I.P. and Wahab, S. (2017). Theoretical potential of hydrokinetic energy in the Upper \nOgun and Upper Kaduna River basins, Nigeria. Journal of Sustainable Development in Africa, 19 (1): 242-256. Clarion University of Pennsylvania, Clarion, USA. ISSN: 1520-5509. Jsd-africa@clarion.edu \nKosnik, L. (2008). The Potential of Water Power in the Fight against Global Warming in the \nUSA, Energy policy, doi: 10.1016/ J. enpol. (05), 009. \nKusakana, K., and Vermaak, H. J. (2013). Hydrokinetic Power Generation for Rural Electricity \nSupply: Case of South Africa. Renewable Energy, 1 (55): 467-73. \nLadokun, L.L., Ajao, K.R., and Sule, B.F. (2013). Hydrokinetic Energy Conversion System: Pros \n-pects and Challenges in Nigerian Hydrological setting, Nigerian Journal of Technology, 3 (32): 538-549. \nMiller, V.B, Ramde, E.W., Grandoville, R.T., and Schaefer, L.A. (2010). Hydrokinetic Power \nfor Energy Access in Rural Ghana, Renewable Energy International Journal, 1(36): 671-675. \nMohibullah, M., Radzi, A. M., and Hakim, M.I.A. (2004). Basics Design Aspects of Micro \nHydropower Plant and Its Potential Development in Malaysia // Power and Energy \nConference, Kualar Lumpur, pp. 220-223. \nNeitsch, S.L, Arnold, J.G., Kiniry, J.R and Williams, J.R. (2009). Soil and Water Assessment \nTool Theoretical Documentation Version 2009 Grassland, Soil and Water Research Laboratory-Agriculture Research Service, Blackland Research Center- Texas Agrilife Research., USA. \nOfuani, A.I. (2013). Combating climate change through renewable energy legislation in \nNigeria: Prospects and Challenges. Paper Presented at university of Ilorin/ UCC (Ghana) International Conference held at university of Ilorin. May 1st-4th 2011. \n \nStephen, V.A, Paul, T.A., and Daniel, J.G. (2012). Survival and Behaviour of Fish interacting \nWith Hydrokinetic Turbines, 9th ISE, Vienna, USA \n \nVermaak, H.J., Kusakana, K., and Koko, S.P. (2013). Status of Micro-hydrokinetic River \nTechnology in Rural Applications: A Review of literature: Renewable and sustainable \nenergy reviews, 29(14): 625-633. \nWahab, S., Ifabiyi, I.P. and Adeogun, A.G. (20017). SWAT analysis of Ikere Gorge Basin for \nHydrokinetic power estimation in selected rural settlement of Oke Ogun, Nigeria. Ruhuna Journal of Science. 8(2):24-43 Ruhuna, Faculty of Science, University of Ruhuna, Sri Lanka. eISSN: 2536-8400. DOI: http//:doi.org/10.4038/rjs.v8il. \n \nCopyright (c) 2018 Geosfera Indonesia Journal and Department of Geography Education, University of Jember \n This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License","PeriodicalId":33276,"journal":{"name":"Geosfera Indonesia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HYDRO-GEOMORPHIC FACTORS AND THE POTENTIAL OF HYDROKINETIC POWER PRODUCTION UPSTREAM OF IKERE GORGE DAM, NIGERIA\",\"authors\":\"Wahab Salau, P. Ifabiyi\",\"doi\":\"10.19184/GEOSI.V4I1.9511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation of hydrokinetic turbine depends on river flow and pressure head (∆H) which are of high potential in many parts of Nigeria. This study attempts the analysis of the potential of the area upstream of Ikere Gorge dam for hydrokinetic potential. Soil and Water Assessment Tool (SWAT) was used to determine the hydrological parameters of the sub-basins. Pearson Moment Correlation and linear regression methods were used to find the relationships between morphometric properties and the discharge parameters. Hydrological modeling and statistical computations were done to estimate the theoretical potential of the catchment. The result shows that River Oshe has 9.542 MW, which is the highest potential while River Konsun with 1.161 MW has the lowest potential Pearson Moment Correlation shows that there is strong positive relation of 0.7 between slope and pressure head (∆H) at 0.05 significant levels. The result of the multiple regression show that hydro-geomorphic factors explained 59.1% of the variance in the explanation of hydrokinetic power potential upstream of Ikere gorge dam. \\nReferences \\nAlaska Center for Energy and Power (ACEP) (2011). Hydrokinetic energy (In-River, Tidal and \\nOcean Current), Retrieved from http://energy-alaska.wikidot.com/ on April 20th, 2014 \\nAschenbrenner, F. (2008). Innovation on traditional waterwheels for renewable energy // \\nPower electronics and motion Control conference, Portoroz, Slovenia, pp.1625 \\nBahleda, M., and Hosko, M. A. (2007). Assessment of water power potential and development \\nNeeds: Electric power research institute, California \\nBhattacharya, A.K., and Bolaji, G.A. (2012). Fluid Flow Interactions in Ogun River, \\nInternational Journal of Research and Reviews in Applied Sciences, 2 (2): 22-23. \\nElectric Power Research Institute, EPRI (2012). Fish passage through turbine: Application of \\nconvectional hydropower data to hydrokinetic technology Palo Alto, USA \\nEnergy Information Administration (2014). Retrieved on Dec. 20th, 2014 from \\nwww.eia.gov/electricity \\nEpler, J. (2010). Tidal Resources characteristics from acoustics Doppler current profiler, An \\nUnpublished M.Sc.Thesis, Department of Mechanical Engineering, University of Washington, USA \\nEvan, M. (2012). Hydrokinetic Power: An Analysis of Its Performance and Potential in the Roza \\nand Kittas Canals. An Unpublished M. Sc. Thesis, the Evergreen State College, USA \\nIfabiyi, I.P. and Wahab, S. (2017). Theoretical potential of hydrokinetic energy in the Upper \\nOgun and Upper Kaduna River basins, Nigeria. Journal of Sustainable Development in Africa, 19 (1): 242-256. Clarion University of Pennsylvania, Clarion, USA. ISSN: 1520-5509. Jsd-africa@clarion.edu \\nKosnik, L. (2008). The Potential of Water Power in the Fight against Global Warming in the \\nUSA, Energy policy, doi: 10.1016/ J. enpol. (05), 009. \\nKusakana, K., and Vermaak, H. J. (2013). Hydrokinetic Power Generation for Rural Electricity \\nSupply: Case of South Africa. Renewable Energy, 1 (55): 467-73. \\nLadokun, L.L., Ajao, K.R., and Sule, B.F. (2013). Hydrokinetic Energy Conversion System: Pros \\n-pects and Challenges in Nigerian Hydrological setting, Nigerian Journal of Technology, 3 (32): 538-549. \\nMiller, V.B, Ramde, E.W., Grandoville, R.T., and Schaefer, L.A. (2010). Hydrokinetic Power \\nfor Energy Access in Rural Ghana, Renewable Energy International Journal, 1(36): 671-675. \\nMohibullah, M., Radzi, A. M., and Hakim, M.I.A. (2004). Basics Design Aspects of Micro \\nHydropower Plant and Its Potential Development in Malaysia // Power and Energy \\nConference, Kualar Lumpur, pp. 220-223. \\nNeitsch, S.L, Arnold, J.G., Kiniry, J.R and Williams, J.R. (2009). Soil and Water Assessment \\nTool Theoretical Documentation Version 2009 Grassland, Soil and Water Research Laboratory-Agriculture Research Service, Blackland Research Center- Texas Agrilife Research., USA. \\nOfuani, A.I. (2013). Combating climate change through renewable energy legislation in \\nNigeria: Prospects and Challenges. Paper Presented at university of Ilorin/ UCC (Ghana) International Conference held at university of Ilorin. May 1st-4th 2011. \\n \\nStephen, V.A, Paul, T.A., and Daniel, J.G. (2012). Survival and Behaviour of Fish interacting \\nWith Hydrokinetic Turbines, 9th ISE, Vienna, USA \\n \\nVermaak, H.J., Kusakana, K., and Koko, S.P. (2013). Status of Micro-hydrokinetic River \\nTechnology in Rural Applications: A Review of literature: Renewable and sustainable \\nenergy reviews, 29(14): 625-633. \\nWahab, S., Ifabiyi, I.P. and Adeogun, A.G. (20017). SWAT analysis of Ikere Gorge Basin for \\nHydrokinetic power estimation in selected rural settlement of Oke Ogun, Nigeria. Ruhuna Journal of Science. 8(2):24-43 Ruhuna, Faculty of Science, University of Ruhuna, Sri Lanka. eISSN: 2536-8400. DOI: http//:doi.org/10.4038/rjs.v8il. \\n \\nCopyright (c) 2018 Geosfera Indonesia Journal and Department of Geography Education, University of Jember \\n This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License\",\"PeriodicalId\":33276,\"journal\":{\"name\":\"Geosfera Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosfera Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/GEOSI.V4I1.9511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosfera Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/GEOSI.V4I1.9511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
水力涡轮机的运行取决于河流流量和压头(∆H),这在尼日利亚许多地区具有很高的潜力。本研究试图分析Ikere Gorge大坝上游地区的水动力潜力。土壤和水评估工具(SWAT)用于确定子流域的水文参数。采用Pearson矩相关和线性回归方法来寻找形态计量特性与放电参数之间的关系。进行了水文建模和统计计算,以估计集水区的理论潜力。结果表明,Oshe河的潜力最大,为9.542MW,而Konsun河的潜力最小,为1.161MW。Pearson矩相关表明,在0.05显著水平下,斜率和压头(∆H)之间存在0.7的强正相关关系。多元回归结果表明,水力地貌因素解释了Ikere峡谷大坝上游水力动能潜力的59.1%的方差。参考阿拉斯加能源与电力中心(ACEP)(2011)。水力动能(河流、潮汐和洋流),检索自http://energy-alaska.wikidot.com/2014年4月20日,Aschenbrenner,F.(2008)。可再生能源传统水车的创新//电力电子和运动控制会议,斯洛文尼亚波托罗兹,第1625页,Bahleda,M.和Hosko,M.A.(2007)。水力潜力和发展需求评估:电力研究所,加州巴塔查里亚,A.K.和博拉吉,G.A.(2012)。奥贡河中的流体流动相互作用,国际应用科学研究与评论杂志,2(2):22-23。电力研究所,EPRI(2012)。通过涡轮机的鱼通道:对流水电数据在水力发电技术中的应用Palo Alto,美国能源信息管理局(2014)。2014年12月20日检索自www.eia.gov/electricity Epler,J.(2010)。声学多普勒海流剖面仪的潮汐资源特征,美国华盛顿大学机械工程系未发表硕士论文,Evan,M.(2012)。水力动力:对其在Roza和Kittas运河中的性能和潜力的分析。一篇未发表的硕士论文,美国常青州立学院Ifabiyi,I.P.和Wahab,S.(2017)。尼日利亚奥贡河上游和卡杜纳河上游流域水力动能的理论势能。《非洲可持续发展杂志》,19(1):242-256。宾夕法尼亚克拉里昂大学,美国克拉里昂。ISSN:1520-5509。Jsd-africa@clarion.eduKosnik,L.(2008)。美国对抗全球变暖的水力潜力,能源政策,doi:10.1016/J.enpol。(05),009。Kusakana,K.和Vermaak,H.J.(2013)。农村电力供应的水力发电:以南非为例。可再生能源,1(55):467-73。Ladokun,L.L.、Ajao,K.R.和Sule,B.F.(2013)。水力动能转换系统:尼日利亚水文环境中的前景和挑战,尼日利亚技术杂志,3(32):538-549。Miller,V.B、Ramde,E.W.、Grandoville,R.T.和Schaefer,L.A.(2010)。《水力发电促进加纳农村能源获取》,《可再生能源国际期刊》,1(36):671-675。Mohibullah,M.、Radzi,A.M.和Hakim,M.I.A.(2004)。马来西亚微型水电站的基础设计及其潜在发展//电力与能源会议,吉隆坡,第220-223页。Neitsch,S.L,Arnold,J.G.,Kiniry,J.R和Williams,J.R.(2009)。土壤和水评估工具理论文件2009年版草原,土壤和水研究实验室农业研究服务,黑土地研究中心-德克萨斯州农业研究。,美国安大略省奥法尼市(2013年)。尼日利亚通过可再生能源立法应对气候变化:前景与挑战。在伊洛林大学/加纳大学国际会议上发表的论文。2011年5月1日至4日。Stephen,V.A,Paul,T.A.和Daniel,J.G.(2012)。鱼类与水力涡轮机相互作用的生存和行为,第九届ISE,美国维也纳Vermaak,H.J.,Kusakana,K.和Koko,S.P.(2013)。微型水力河技术在农村应用中的现状:文献综述:可再生和可持续能源综述,29(14):625-633。Wahab,S.、Ifabiyi,I.P.和Adeogun,A.G.(20017)。Ikere峡谷流域的SWAT分析,用于尼日利亚Oke Ogun选定农村定居点的水力动力估算。鲁胡纳科学杂志。8(2):24-43鲁胡纳,斯里兰卡鲁胡纳大学理学院。eISSN:2536-8400。DOI:http://DOI.org/10.4038/rjs.v8il。版权所有(c)2018 Geosfera Indonesia Journal and Department of Geography Education,University of Jember本作品根据知识共享署名共享类似4.0的国际许可证获得许可
HYDRO-GEOMORPHIC FACTORS AND THE POTENTIAL OF HYDROKINETIC POWER PRODUCTION UPSTREAM OF IKERE GORGE DAM, NIGERIA
The operation of hydrokinetic turbine depends on river flow and pressure head (∆H) which are of high potential in many parts of Nigeria. This study attempts the analysis of the potential of the area upstream of Ikere Gorge dam for hydrokinetic potential. Soil and Water Assessment Tool (SWAT) was used to determine the hydrological parameters of the sub-basins. Pearson Moment Correlation and linear regression methods were used to find the relationships between morphometric properties and the discharge parameters. Hydrological modeling and statistical computations were done to estimate the theoretical potential of the catchment. The result shows that River Oshe has 9.542 MW, which is the highest potential while River Konsun with 1.161 MW has the lowest potential Pearson Moment Correlation shows that there is strong positive relation of 0.7 between slope and pressure head (∆H) at 0.05 significant levels. The result of the multiple regression show that hydro-geomorphic factors explained 59.1% of the variance in the explanation of hydrokinetic power potential upstream of Ikere gorge dam.
References
Alaska Center for Energy and Power (ACEP) (2011). Hydrokinetic energy (In-River, Tidal and
Ocean Current), Retrieved from http://energy-alaska.wikidot.com/ on April 20th, 2014
Aschenbrenner, F. (2008). Innovation on traditional waterwheels for renewable energy //
Power electronics and motion Control conference, Portoroz, Slovenia, pp.1625
Bahleda, M., and Hosko, M. A. (2007). Assessment of water power potential and development
Needs: Electric power research institute, California
Bhattacharya, A.K., and Bolaji, G.A. (2012). Fluid Flow Interactions in Ogun River,
International Journal of Research and Reviews in Applied Sciences, 2 (2): 22-23.
Electric Power Research Institute, EPRI (2012). Fish passage through turbine: Application of
convectional hydropower data to hydrokinetic technology Palo Alto, USA
Energy Information Administration (2014). Retrieved on Dec. 20th, 2014 from
www.eia.gov/electricity
Epler, J. (2010). Tidal Resources characteristics from acoustics Doppler current profiler, An
Unpublished M.Sc.Thesis, Department of Mechanical Engineering, University of Washington, USA
Evan, M. (2012). Hydrokinetic Power: An Analysis of Its Performance and Potential in the Roza
and Kittas Canals. An Unpublished M. Sc. Thesis, the Evergreen State College, USA
Ifabiyi, I.P. and Wahab, S. (2017). Theoretical potential of hydrokinetic energy in the Upper
Ogun and Upper Kaduna River basins, Nigeria. Journal of Sustainable Development in Africa, 19 (1): 242-256. Clarion University of Pennsylvania, Clarion, USA. ISSN: 1520-5509. Jsd-africa@clarion.edu
Kosnik, L. (2008). The Potential of Water Power in the Fight against Global Warming in the
USA, Energy policy, doi: 10.1016/ J. enpol. (05), 009.
Kusakana, K., and Vermaak, H. J. (2013). Hydrokinetic Power Generation for Rural Electricity
Supply: Case of South Africa. Renewable Energy, 1 (55): 467-73.
Ladokun, L.L., Ajao, K.R., and Sule, B.F. (2013). Hydrokinetic Energy Conversion System: Pros
-pects and Challenges in Nigerian Hydrological setting, Nigerian Journal of Technology, 3 (32): 538-549.
Miller, V.B, Ramde, E.W., Grandoville, R.T., and Schaefer, L.A. (2010). Hydrokinetic Power
for Energy Access in Rural Ghana, Renewable Energy International Journal, 1(36): 671-675.
Mohibullah, M., Radzi, A. M., and Hakim, M.I.A. (2004). Basics Design Aspects of Micro
Hydropower Plant and Its Potential Development in Malaysia // Power and Energy
Conference, Kualar Lumpur, pp. 220-223.
Neitsch, S.L, Arnold, J.G., Kiniry, J.R and Williams, J.R. (2009). Soil and Water Assessment
Tool Theoretical Documentation Version 2009 Grassland, Soil and Water Research Laboratory-Agriculture Research Service, Blackland Research Center- Texas Agrilife Research., USA.
Ofuani, A.I. (2013). Combating climate change through renewable energy legislation in
Nigeria: Prospects and Challenges. Paper Presented at university of Ilorin/ UCC (Ghana) International Conference held at university of Ilorin. May 1st-4th 2011.
Stephen, V.A, Paul, T.A., and Daniel, J.G. (2012). Survival and Behaviour of Fish interacting
With Hydrokinetic Turbines, 9th ISE, Vienna, USA
Vermaak, H.J., Kusakana, K., and Koko, S.P. (2013). Status of Micro-hydrokinetic River
Technology in Rural Applications: A Review of literature: Renewable and sustainable
energy reviews, 29(14): 625-633.
Wahab, S., Ifabiyi, I.P. and Adeogun, A.G. (20017). SWAT analysis of Ikere Gorge Basin for
Hydrokinetic power estimation in selected rural settlement of Oke Ogun, Nigeria. Ruhuna Journal of Science. 8(2):24-43 Ruhuna, Faculty of Science, University of Ruhuna, Sri Lanka. eISSN: 2536-8400. DOI: http//:doi.org/10.4038/rjs.v8il.
Copyright (c) 2018 Geosfera Indonesia Journal and Department of Geography Education, University of Jember
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License