光谱分析在伊朗萨韦北部蚀变带识别中的应用

Q3 Chemistry
K. Rangzan, S. Beyranvand, H. Pourkaseb, H. Ranjbar, A. Zarasvandi
{"title":"光谱分析在伊朗萨韦北部蚀变带识别中的应用","authors":"K. Rangzan, S. Beyranvand, H. Pourkaseb, H. Ranjbar, A. Zarasvandi","doi":"10.1255/jsi.2020.a15","DOIUrl":null,"url":null,"abstract":"An extensive series of volcanic rocks are exposed in the north of Saveh city, Iran, which consist of phyllic, argillic and propylitic hydrothermal alteration types. For the purpose of the investigation, a FieldSpec3® spectroradiometer was used to measure the spectral response of the mineral content of these rocks. The spectral analyses of reflectance curve by The Spectral Geologist (TSG) software could discriminate kaolinite and montmorillonite (argillic), illite, muscovite, phengite and paragonite (phyllic), hornblende and chlorite, siderite (propylitic), hematite and goethite from the gossans. It also detected gypsum of hydrothermal alteration zones. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) image, which was used for mapping the hydrothermal alteration minerals, contains the Visible and Near Infrared (VNIR) wavelengths between 0.52 µm and 0.86 µm, Short Wave Infrared (SWIR) wavelengths between 1.6 µm and 2.43 µm and Thermal Infrared (TIR) wavelengths between 8.125 µm and 11.65 µm with 15, 30 and 90 m spatial resolutions, respectively. For calibration of the ASTER images, the extracted spectra of different rocks and minerals were used for atmospheric and radiometric corrections. Mixture tuned matched filtering (MTMF) and Spectral Angle Mapper (SAM) were applied on ASTER data to map the hydrothermal alteration of minerals. The use of the spectroradiometry techniques in conjunction with other data exhibits the ability of these new methods for non-destructive and rapid identification of mineral types for more detailed investigation. The results show that the area has undergone different levels of hydrothermal alteration, so much so that phyllic, argillic and propylitic types of hydrothermal alteration are present in the study area. This may point to high potential and promising zones for the exploration of porphyry mineralisation.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Applying spectral analysis for identification of alteration zones in north Saveh area, Iran\",\"authors\":\"K. Rangzan, S. Beyranvand, H. Pourkaseb, H. Ranjbar, A. Zarasvandi\",\"doi\":\"10.1255/jsi.2020.a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extensive series of volcanic rocks are exposed in the north of Saveh city, Iran, which consist of phyllic, argillic and propylitic hydrothermal alteration types. For the purpose of the investigation, a FieldSpec3® spectroradiometer was used to measure the spectral response of the mineral content of these rocks. The spectral analyses of reflectance curve by The Spectral Geologist (TSG) software could discriminate kaolinite and montmorillonite (argillic), illite, muscovite, phengite and paragonite (phyllic), hornblende and chlorite, siderite (propylitic), hematite and goethite from the gossans. It also detected gypsum of hydrothermal alteration zones. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) image, which was used for mapping the hydrothermal alteration minerals, contains the Visible and Near Infrared (VNIR) wavelengths between 0.52 µm and 0.86 µm, Short Wave Infrared (SWIR) wavelengths between 1.6 µm and 2.43 µm and Thermal Infrared (TIR) wavelengths between 8.125 µm and 11.65 µm with 15, 30 and 90 m spatial resolutions, respectively. For calibration of the ASTER images, the extracted spectra of different rocks and minerals were used for atmospheric and radiometric corrections. Mixture tuned matched filtering (MTMF) and Spectral Angle Mapper (SAM) were applied on ASTER data to map the hydrothermal alteration of minerals. The use of the spectroradiometry techniques in conjunction with other data exhibits the ability of these new methods for non-destructive and rapid identification of mineral types for more detailed investigation. The results show that the area has undergone different levels of hydrothermal alteration, so much so that phyllic, argillic and propylitic types of hydrothermal alteration are present in the study area. This may point to high potential and promising zones for the exploration of porphyry mineralisation.\",\"PeriodicalId\":37385,\"journal\":{\"name\":\"Journal of Spectral Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/jsi.2020.a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

摘要

伊朗萨韦市北部出露了一系列广泛的火山岩,由千枚岩、泥质岩和丙基热液蚀变类型组成。为了进行调查,使用FieldSpec3®光谱辐射计测量这些岩石矿物含量的光谱响应。光谱地质学家(TSG)软件对反射率曲线的光谱分析可以从铁帽中区分高岭石和蒙脱石(泥质)、伊利石、白云母、多硅白云母和副绿泥石(千枚岩)、角闪石和绿泥石、菱铁矿(叶立石)、赤铁矿和针铁矿。它还探测到热液蚀变带的石膏。用于绘制热液蚀变矿物图的高级星载热发射和反射辐射计(ASTER)图像包含0.52µm至0.86µm之间的可见光和近红外(VNIR)波长、1.6µm至2.43µm之间短波红外(SWIR)波长和8.125µm至11.65µm之间热红外(TIR)波长,30和90m的空间分辨率。为了校准ASTER图像,提取的不同岩石和矿物的光谱用于大气和辐射校正。将混合调谐匹配滤波(MTMF)和光谱角映射器(SAM)应用于ASTER数据,绘制了矿物热液蚀变图。将光谱辐射测量技术与其他数据结合使用,展示了这些新方法对矿物类型进行无损和快速识别的能力,以进行更详细的研究。结果表明,该区经历了不同程度的热液蚀变,研究区内存在千枚岩型、泥质型和丙基型热液蚀蚀变。这可能指向斑岩矿化勘探的高潜力和有前景的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying spectral analysis for identification of alteration zones in north Saveh area, Iran
An extensive series of volcanic rocks are exposed in the north of Saveh city, Iran, which consist of phyllic, argillic and propylitic hydrothermal alteration types. For the purpose of the investigation, a FieldSpec3® spectroradiometer was used to measure the spectral response of the mineral content of these rocks. The spectral analyses of reflectance curve by The Spectral Geologist (TSG) software could discriminate kaolinite and montmorillonite (argillic), illite, muscovite, phengite and paragonite (phyllic), hornblende and chlorite, siderite (propylitic), hematite and goethite from the gossans. It also detected gypsum of hydrothermal alteration zones. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) image, which was used for mapping the hydrothermal alteration minerals, contains the Visible and Near Infrared (VNIR) wavelengths between 0.52 µm and 0.86 µm, Short Wave Infrared (SWIR) wavelengths between 1.6 µm and 2.43 µm and Thermal Infrared (TIR) wavelengths between 8.125 µm and 11.65 µm with 15, 30 and 90 m spatial resolutions, respectively. For calibration of the ASTER images, the extracted spectra of different rocks and minerals were used for atmospheric and radiometric corrections. Mixture tuned matched filtering (MTMF) and Spectral Angle Mapper (SAM) were applied on ASTER data to map the hydrothermal alteration of minerals. The use of the spectroradiometry techniques in conjunction with other data exhibits the ability of these new methods for non-destructive and rapid identification of mineral types for more detailed investigation. The results show that the area has undergone different levels of hydrothermal alteration, so much so that phyllic, argillic and propylitic types of hydrothermal alteration are present in the study area. This may point to high potential and promising zones for the exploration of porphyry mineralisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信