kD-STR:一种时空数据简化与建模方法

L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank
{"title":"kD-STR:一种时空数据简化与建模方法","authors":"L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank","doi":"10.1145/3439334","DOIUrl":null,"url":null,"abstract":"Analysing and learning from spatio-temporal datasets is an important process in many domains, including transportation, healthcare and meteorology. In particular, data collected by sensors in the environment allows us to understand and model the processes acting within the environment. Recently, the volume of spatio-temporal data collected has increased significantly, presenting several challenges for data scientists. Methods are therefore needed to reduce the quantity of data that needs to be processed in order to analyse and learn from spatio-temporal datasets. In this article, we present the -Dimensional Spatio-Temporal Reduction method (D-STR) for reducing the quantity of data used to store a dataset whilst enabling multiple types of analysis on the reduced dataset. D-STR uses hierarchical partitioning to find spatio-temporal regions of similar instances, and models the instances within each region to summarise the dataset. We demonstrate the generality of D-STR with three datasets exhibiting different spatio-temporal characteristics and present results for a range of data modelling techniques. Finally, we compare D-STR with other techniques for reducing the volume of spatio-temporal data. Our results demonstrate that D-STR is effective in reducing spatio-temporal data and generalises to datasets that exhibit different properties.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"2 1","pages":"1 - 31"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3439334","citationCount":"2","resultStr":"{\"title\":\"kD-STR: A Method for Spatio-Temporal Data Reduction and Modelling\",\"authors\":\"L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank\",\"doi\":\"10.1145/3439334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysing and learning from spatio-temporal datasets is an important process in many domains, including transportation, healthcare and meteorology. In particular, data collected by sensors in the environment allows us to understand and model the processes acting within the environment. Recently, the volume of spatio-temporal data collected has increased significantly, presenting several challenges for data scientists. Methods are therefore needed to reduce the quantity of data that needs to be processed in order to analyse and learn from spatio-temporal datasets. In this article, we present the -Dimensional Spatio-Temporal Reduction method (D-STR) for reducing the quantity of data used to store a dataset whilst enabling multiple types of analysis on the reduced dataset. D-STR uses hierarchical partitioning to find spatio-temporal regions of similar instances, and models the instances within each region to summarise the dataset. We demonstrate the generality of D-STR with three datasets exhibiting different spatio-temporal characteristics and present results for a range of data modelling techniques. Finally, we compare D-STR with other techniques for reducing the volume of spatio-temporal data. Our results demonstrate that D-STR is effective in reducing spatio-temporal data and generalises to datasets that exhibit different properties.\",\"PeriodicalId\":93404,\"journal\":{\"name\":\"ACM/IMS transactions on data science\",\"volume\":\"2 1\",\"pages\":\"1 - 31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3439334\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IMS transactions on data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3439334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3439334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分析和学习时空数据集是交通、医疗保健和气象等许多领域的一个重要过程。特别是,环境中的传感器收集的数据使我们能够理解和模拟在环境中作用的过程。近年来,收集的时空数据量显著增加,给数据科学家带来了一些挑战。因此,需要一些方法来减少需要处理的数据量,以便分析和学习时空数据集。在本文中,我们提出了一维时空缩减方法(D-STR),用于减少用于存储数据集的数据量,同时支持对缩减后的数据集进行多种类型的分析。D-STR使用分层划分来找到相似实例的时空区域,并对每个区域内的实例建模以总结数据集。我们用三个表现出不同时空特征的数据集证明了D-STR的普遍性,并提出了一系列数据建模技术的结果。最后,我们将D-STR与其他减少时空数据量的技术进行了比较。我们的研究结果表明,D-STR在减少时空数据方面是有效的,并且可以推广到具有不同属性的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
kD-STR: A Method for Spatio-Temporal Data Reduction and Modelling
Analysing and learning from spatio-temporal datasets is an important process in many domains, including transportation, healthcare and meteorology. In particular, data collected by sensors in the environment allows us to understand and model the processes acting within the environment. Recently, the volume of spatio-temporal data collected has increased significantly, presenting several challenges for data scientists. Methods are therefore needed to reduce the quantity of data that needs to be processed in order to analyse and learn from spatio-temporal datasets. In this article, we present the -Dimensional Spatio-Temporal Reduction method (D-STR) for reducing the quantity of data used to store a dataset whilst enabling multiple types of analysis on the reduced dataset. D-STR uses hierarchical partitioning to find spatio-temporal regions of similar instances, and models the instances within each region to summarise the dataset. We demonstrate the generality of D-STR with three datasets exhibiting different spatio-temporal characteristics and present results for a range of data modelling techniques. Finally, we compare D-STR with other techniques for reducing the volume of spatio-temporal data. Our results demonstrate that D-STR is effective in reducing spatio-temporal data and generalises to datasets that exhibit different properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信