旋转粘弹性Walters流体中的热溶液对流

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES
L. Palese
{"title":"旋转粘弹性Walters流体中的热溶液对流","authors":"L. Palese","doi":"10.1478/AAPP.97S1A20","DOIUrl":null,"url":null,"abstract":"In this paper we study the nonlinear Lyapunov stability of the thermodiffusive equilibrium of a viscoelastic rotating Walters fluid, in a horizontal rotating layer heated and salted from below. We reformulate the nonlinear stability problem, projecting the initial perturbation evolution equations on some suitable subspaces of the space of kinematically admissible functions. In this way we preserve the contribution of the Coriolis term and, jointly, all nonlinear terms vanish. When the viscoelasticy parameter vanishes, that is for the classical rotating Benard problem, if instability occurs as stationary convection, the linear and nonlinear stability bounds are equal.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermosolutal convection in a rotating viscoelastic Walters fluid\",\"authors\":\"L. Palese\",\"doi\":\"10.1478/AAPP.97S1A20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the nonlinear Lyapunov stability of the thermodiffusive equilibrium of a viscoelastic rotating Walters fluid, in a horizontal rotating layer heated and salted from below. We reformulate the nonlinear stability problem, projecting the initial perturbation evolution equations on some suitable subspaces of the space of kinematically admissible functions. In this way we preserve the contribution of the Coriolis term and, jointly, all nonlinear terms vanish. When the viscoelasticy parameter vanishes, that is for the classical rotating Benard problem, if instability occurs as stationary convection, the linear and nonlinear stability bounds are equal.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.97S1A20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.97S1A20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们研究了粘弹性旋转Walters流体在水平旋转层中热扩散平衡的非线性李雅普诺夫稳定性,该旋转层从下面加热和加盐。我们重新表述了非线性稳定性问题,将初始扰动演化方程投影到运动容许函数空间的一些合适的子空间上。通过这种方式,我们保留了科里奥利项的贡献,并且共同地,所有非线性项都消失了。当粘弹性参数消失时,即对于经典的旋转Benard问题,如果不稳定性作为平稳对流发生,则线性和非线性稳定性边界相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermosolutal convection in a rotating viscoelastic Walters fluid
In this paper we study the nonlinear Lyapunov stability of the thermodiffusive equilibrium of a viscoelastic rotating Walters fluid, in a horizontal rotating layer heated and salted from below. We reformulate the nonlinear stability problem, projecting the initial perturbation evolution equations on some suitable subspaces of the space of kinematically admissible functions. In this way we preserve the contribution of the Coriolis term and, jointly, all nonlinear terms vanish. When the viscoelasticy parameter vanishes, that is for the classical rotating Benard problem, if instability occurs as stationary convection, the linear and nonlinear stability bounds are equal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
31 weeks
期刊介绍: This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信