{"title":"抽象二次型理论中的k -理论与自由归纳分级环","authors":"K. Roberto, H. Mariano","doi":"10.52547/cgasa.2021.101755","DOIUrl":null,"url":null,"abstract":". We build on previous work on multirings ( [17]) that provides generalizations of the available abstract quadratic forms theories (special groups and real semigroups) to the context of multirings ( [10], [14]). Here we raise one step in this generalization, introducing the concept of pre-special hyperfields and expand a fundamental tool in quadratic forms theory to the more general multivalued setting: the K-theory. We introduce and develop the K-theory of hyperbolic hyperfields that generalize simultaneously Milnor’s K-theory ( [11]) and Special Groups K-theory, developed by Dickmann-Miraglia ( [5]). We develop some properties of this generalized K-theory, that can be seen as a free inductive graded ring, a concept introduced in [2] in order to provide a solution of Marshall’s Signature Conjecture.","PeriodicalId":41919,"journal":{"name":"Categories and General Algebraic Structures with Applications","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"K-theories and Free Inductive Graded Rings in Abstract Quadratic Forms Theories\",\"authors\":\"K. Roberto, H. Mariano\",\"doi\":\"10.52547/cgasa.2021.101755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We build on previous work on multirings ( [17]) that provides generalizations of the available abstract quadratic forms theories (special groups and real semigroups) to the context of multirings ( [10], [14]). Here we raise one step in this generalization, introducing the concept of pre-special hyperfields and expand a fundamental tool in quadratic forms theory to the more general multivalued setting: the K-theory. We introduce and develop the K-theory of hyperbolic hyperfields that generalize simultaneously Milnor’s K-theory ( [11]) and Special Groups K-theory, developed by Dickmann-Miraglia ( [5]). We develop some properties of this generalized K-theory, that can be seen as a free inductive graded ring, a concept introduced in [2] in order to provide a solution of Marshall’s Signature Conjecture.\",\"PeriodicalId\":41919,\"journal\":{\"name\":\"Categories and General Algebraic Structures with Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Categories and General Algebraic Structures with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/cgasa.2021.101755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories and General Algebraic Structures with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/cgasa.2021.101755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
K-theories and Free Inductive Graded Rings in Abstract Quadratic Forms Theories
. We build on previous work on multirings ( [17]) that provides generalizations of the available abstract quadratic forms theories (special groups and real semigroups) to the context of multirings ( [10], [14]). Here we raise one step in this generalization, introducing the concept of pre-special hyperfields and expand a fundamental tool in quadratic forms theory to the more general multivalued setting: the K-theory. We introduce and develop the K-theory of hyperbolic hyperfields that generalize simultaneously Milnor’s K-theory ( [11]) and Special Groups K-theory, developed by Dickmann-Miraglia ( [5]). We develop some properties of this generalized K-theory, that can be seen as a free inductive graded ring, a concept introduced in [2] in order to provide a solution of Marshall’s Signature Conjecture.
期刊介绍:
Categories and General Algebraic Structures with Applications is an international journal published by Shahid Beheshti University, Tehran, Iran, free of page charges. It publishes original high quality research papers and invited research and survey articles mainly in two subjects: Categories (algebraic, topological, and applications in mathematics and computer sciences) and General Algebraic Structures (not necessarily classical algebraic structures, but universal algebras such as algebras in categories, semigroups, their actions, automata, ordered algebraic structures, lattices (of any kind), quasigroups, hyper universal algebras, and their applications.