再生核Hilbert空间中函数线性回归的梯度迭代方法

Hongzhi Tong, Michael Ng
{"title":"再生核Hilbert空间中函数线性回归的梯度迭代方法","authors":"Hongzhi Tong, Michael Ng","doi":"10.4208/aam.oa-2021-0016","DOIUrl":null,"url":null,"abstract":". We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces. In the algorithm, we use an early stopping technique, instead of the classical Tikhonov regularization, to prevent the iteration from an overfitting function. Under mild conditions, we obtain upper bounds, essentially matching the known minimax lower bounds, for excess prediction risk. An almost sure convergence is also established for the proposed algorithm.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces\",\"authors\":\"Hongzhi Tong, Michael Ng\",\"doi\":\"10.4208/aam.oa-2021-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces. In the algorithm, we use an early stopping technique, instead of the classical Tikhonov regularization, to prevent the iteration from an overfitting function. Under mild conditions, we obtain upper bounds, essentially matching the known minimax lower bounds, for excess prediction risk. An almost sure convergence is also established for the proposed algorithm.\",\"PeriodicalId\":58853,\"journal\":{\"name\":\"应用数学年刊:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学年刊:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4208/aam.oa-2021-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学年刊:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4208/aam.oa-2021-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在再生核Hilbert空间的框架下,我们考虑了一种用于预测函数线性回归的梯度迭代算法。在该算法中,我们使用了早期停止技术,而不是经典的Tikhonov正则化,以防止迭代函数过拟合。在温和的条件下,我们获得了超额预测风险的上界,基本上与已知的极小极大下界相匹配。对于所提出的算法,也建立了几乎肯定的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces
. We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces. In the algorithm, we use an early stopping technique, instead of the classical Tikhonov regularization, to prevent the iteration from an overfitting function. Under mild conditions, we obtain upper bounds, essentially matching the known minimax lower bounds, for excess prediction risk. An almost sure convergence is also established for the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
544
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信