基于威布尔分布和指数分布的竞争风险模型的贝叶斯估计

IF 0.8 Q3 STATISTICS & PROBABILITY
H. Talhi, H. Aiachi, N. Rahmania
{"title":"基于威布尔分布和指数分布的竞争风险模型的贝叶斯估计","authors":"H. Talhi, H. Aiachi, N. Rahmania","doi":"10.1515/mcma-2022-2112","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the estimation of the unknown parameters of a competing risk model based on a Weibull distributed decreasing failure rate and an exponentially distributed constant failure rate, under right censored data. The Bayes estimators and the corresponding risks are derived using various loss functions. Since the posterior analysis involves analytically intractable integrals, we propose a Monte Carlo method to compute these estimators. Given initial values of the model parameters, the maximum likelihood estimators are computed using the expectation-maximization algorithm. Finally, we use Pitman’s closeness criterion and integrated mean-square error to compare the performance of the Bayesian and the maximum likelihood estimators.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"163 - 174"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian estimation of a competing risk model based on Weibull and exponential distributions under right censored data\",\"authors\":\"H. Talhi, H. Aiachi, N. Rahmania\",\"doi\":\"10.1515/mcma-2022-2112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate the estimation of the unknown parameters of a competing risk model based on a Weibull distributed decreasing failure rate and an exponentially distributed constant failure rate, under right censored data. The Bayes estimators and the corresponding risks are derived using various loss functions. Since the posterior analysis involves analytically intractable integrals, we propose a Monte Carlo method to compute these estimators. Given initial values of the model parameters, the maximum likelihood estimators are computed using the expectation-maximization algorithm. Finally, we use Pitman’s closeness criterion and integrated mean-square error to compare the performance of the Bayesian and the maximum likelihood estimators.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"163 - 174\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了基于威布尔分布递减故障率和指数分布常数故障率的竞争风险模型的未知参数估计问题。利用各种损失函数推导出贝叶斯估计量和相应的风险。由于后验分析涉及解析难以处理的积分,我们提出一种蒙特卡罗方法来计算这些估计量。给定模型参数的初始值,使用期望最大化算法计算最大似然估计量。最后,我们使用Pitman的接近准则和综合均方误差来比较贝叶斯估计和最大似然估计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian estimation of a competing risk model based on Weibull and exponential distributions under right censored data
Abstract In this paper, we investigate the estimation of the unknown parameters of a competing risk model based on a Weibull distributed decreasing failure rate and an exponentially distributed constant failure rate, under right censored data. The Bayes estimators and the corresponding risks are derived using various loss functions. Since the posterior analysis involves analytically intractable integrals, we propose a Monte Carlo method to compute these estimators. Given initial values of the model parameters, the maximum likelihood estimators are computed using the expectation-maximization algorithm. Finally, we use Pitman’s closeness criterion and integrated mean-square error to compare the performance of the Bayesian and the maximum likelihood estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信