Hilbert空间中k -g聚变的构造及其对偶

Q4 Mathematics
R. Ahmadi, Gholamreza Rahimlou, V. Sadri, Ramazan Zarghami Farfar, Technical
{"title":"Hilbert空间中k -g聚变的构造及其对偶","authors":"R. Ahmadi, Gholamreza Rahimlou, V. Sadri, Ramazan Zarghami Farfar, Technical","doi":"10.31926/but.mif.2020.13.62.1.2","DOIUrl":null,"url":null,"abstract":"Frames for operators or K-frames were recently considered by Găvruța (2012) in connection with atomic systems. Also, generalized frames are important frames in the Hilbert space of bounded linear operators. Fusion frames, which are a special case of generalized frames have various applications. This paper introduces the concept of generalized fusion frames for operators also known as K-g-fusion frames and we get some results for characterization of these frames. We further discuss dual and Q-dual in connection with K-g-fusion frames. Also we obtain some useful identities for these frames. We also give several methods to construct K-g-fusion frames. The results of this paper can be used in sampling theory which are developed by g-frames and especially fusion frames. In the end, we discuss the stability of a more general perturbation for K-g-fusion frames.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constructions of K-g-fusion and their dual in Hilbert spaces\",\"authors\":\"R. Ahmadi, Gholamreza Rahimlou, V. Sadri, Ramazan Zarghami Farfar, Technical\",\"doi\":\"10.31926/but.mif.2020.13.62.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frames for operators or K-frames were recently considered by Găvruța (2012) in connection with atomic systems. Also, generalized frames are important frames in the Hilbert space of bounded linear operators. Fusion frames, which are a special case of generalized frames have various applications. This paper introduces the concept of generalized fusion frames for operators also known as K-g-fusion frames and we get some results for characterization of these frames. We further discuss dual and Q-dual in connection with K-g-fusion frames. Also we obtain some useful identities for these frames. We also give several methods to construct K-g-fusion frames. The results of this paper can be used in sampling theory which are developed by g-frames and especially fusion frames. In the end, we discuss the stability of a more general perturbation for K-g-fusion frames.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2020.13.62.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2020.13.62.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

Găvruța(2012)最近考虑了与原子系统相关的算子框架或K框架。广义框架也是有界线性算子的希尔伯特空间中的重要框架。融合框架是广义框架的一个特例,具有多种应用。本文介绍了算子广义融合框架的概念,也称为K-g-融合框架,并得到了一些关于这些框架特征的结果。我们结合K-g-融合框架进一步讨论了对偶和Q-对偶。我们还得到了这些帧的一些有用的恒等式。我们还给出了构造K-g融合框架的几种方法。本文的结果可用于g框架,特别是融合框架发展起来的采样理论。最后,我们讨论了K-g-融合框架的一个更一般扰动的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructions of K-g-fusion and their dual in Hilbert spaces
Frames for operators or K-frames were recently considered by Găvruța (2012) in connection with atomic systems. Also, generalized frames are important frames in the Hilbert space of bounded linear operators. Fusion frames, which are a special case of generalized frames have various applications. This paper introduces the concept of generalized fusion frames for operators also known as K-g-fusion frames and we get some results for characterization of these frames. We further discuss dual and Q-dual in connection with K-g-fusion frames. Also we obtain some useful identities for these frames. We also give several methods to construct K-g-fusion frames. The results of this paper can be used in sampling theory which are developed by g-frames and especially fusion frames. In the end, we discuss the stability of a more general perturbation for K-g-fusion frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信