Green函数,painlevevi方程,以及权值为1的Eisenstein级数

IF 1.3 1区 数学 Q1 MATHEMATICS
Zhijie Chen, Ting-Jung Kuo, Changshou Lin, Chin-Lung Wang
{"title":"Green函数,painlevevi方程,以及权值为1的Eisenstein级数","authors":"Zhijie Chen, Ting-Jung Kuo, Changshou Lin, Chin-Lung Wang","doi":"10.4310/JDG/1518490817","DOIUrl":null,"url":null,"abstract":"We study the problem: How many singular points of a solution λ(t) to the Painleve VI equation with parameter ( 8 , −1 8 , 1 8 , 3 8 ) might have in C \\ {0, 1}? Here t0 ∈ C \\ {0, 1} is called a singular point of λ(t) if λ(t0) ∈ {0, 1, t0, ∞}. Based on Hitchin’s formula, we explore the connection of this problem with Green function and the Eisenstein series of weight one. Among other things, we prove: (i) There are only three solutions which have no singular points in C \\ {0, 1}. (ii) For a special type of solutions (called real solutions here), any branch of a solution has at most two singular points (in particular, at most one pole) in C \\ {0, 1}. (iii) Any Riccati solution has singular points in C \\ {0, 1}. (iv) For each N ≥ 5 and N 6= 6, we calculate the number of the real j-values of zeros of the Eisenstein series EN 1 (τ; k1, k2) of weight one, where (k1, k2) runs over [0, N − 1]2 with gcd(k1, k2, N) = 1. The geometry of the critical points of the Green function on a flat torus Eτ , as τ varies in the moduliM1, plays a fundamental role in our analysis of the Painleve IV equation. In particular, the conjectures raised in [22] on the shape of the domain Ω5 ⊂ M1, which consists of tori whose Green function has extra pair of critical points, are completely solved here.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":"108 1","pages":"185-241"},"PeriodicalIF":1.3000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4310/JDG/1518490817","citationCount":"36","resultStr":"{\"title\":\"Green function, Painlevé VI equation, and Eisenstein series of weight one\",\"authors\":\"Zhijie Chen, Ting-Jung Kuo, Changshou Lin, Chin-Lung Wang\",\"doi\":\"10.4310/JDG/1518490817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem: How many singular points of a solution λ(t) to the Painleve VI equation with parameter ( 8 , −1 8 , 1 8 , 3 8 ) might have in C \\\\ {0, 1}? Here t0 ∈ C \\\\ {0, 1} is called a singular point of λ(t) if λ(t0) ∈ {0, 1, t0, ∞}. Based on Hitchin’s formula, we explore the connection of this problem with Green function and the Eisenstein series of weight one. Among other things, we prove: (i) There are only three solutions which have no singular points in C \\\\ {0, 1}. (ii) For a special type of solutions (called real solutions here), any branch of a solution has at most two singular points (in particular, at most one pole) in C \\\\ {0, 1}. (iii) Any Riccati solution has singular points in C \\\\ {0, 1}. (iv) For each N ≥ 5 and N 6= 6, we calculate the number of the real j-values of zeros of the Eisenstein series EN 1 (τ; k1, k2) of weight one, where (k1, k2) runs over [0, N − 1]2 with gcd(k1, k2, N) = 1. The geometry of the critical points of the Green function on a flat torus Eτ , as τ varies in the moduliM1, plays a fundamental role in our analysis of the Painleve IV equation. In particular, the conjectures raised in [22] on the shape of the domain Ω5 ⊂ M1, which consists of tori whose Green function has extra pair of critical points, are completely solved here.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\"108 1\",\"pages\":\"185-241\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4310/JDG/1518490817\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JDG/1518490817\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1518490817","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 36

摘要

我们研究了一个问题:参数为(8,−1 8,1 8,3 8)的Painlev-VI方程的解λ(t)在C\{0,1}中可能有多少个奇异点?这里t0∈C\{0,1}称为λ(t)的奇异点,如果λ(t0)∈{0,1t0,∞}。在希钦公式的基础上,我们探讨了这个问题与格林函数和权一的艾森斯坦级数的联系。除其他外,我们证明:(i)在C\{0,1}中只有三个解没有奇异点。(ii)对于一种特殊类型的解(这里称为实解),解的任何分支在C\{0,1}中最多有两个奇异点(特别是,最多有一个极点)。(iii)任何Riccati解在C\{0,1}中都有奇异点。(iv)对于每个N≥5和N 6=6,我们计算权为1的艾森斯坦级数EN 1(τ;k1,k2)的零的实j值的个数,其中(k1,k2)在[0,N−1]2上运行,gcd(k1、k2,N)=1。当τ在模量M1中变化时,平环面上格林函数临界点的几何结构Eτ在我们分析Painleve IV方程中起着重要作用。特别地,在[22]中提出的关于域Ω5⊂M1的形状的猜想,在这里完全解决了,该域由格林函数具有额外一对临界点的复曲面组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green function, Painlevé VI equation, and Eisenstein series of weight one
We study the problem: How many singular points of a solution λ(t) to the Painleve VI equation with parameter ( 8 , −1 8 , 1 8 , 3 8 ) might have in C \ {0, 1}? Here t0 ∈ C \ {0, 1} is called a singular point of λ(t) if λ(t0) ∈ {0, 1, t0, ∞}. Based on Hitchin’s formula, we explore the connection of this problem with Green function and the Eisenstein series of weight one. Among other things, we prove: (i) There are only three solutions which have no singular points in C \ {0, 1}. (ii) For a special type of solutions (called real solutions here), any branch of a solution has at most two singular points (in particular, at most one pole) in C \ {0, 1}. (iii) Any Riccati solution has singular points in C \ {0, 1}. (iv) For each N ≥ 5 and N 6= 6, we calculate the number of the real j-values of zeros of the Eisenstein series EN 1 (τ; k1, k2) of weight one, where (k1, k2) runs over [0, N − 1]2 with gcd(k1, k2, N) = 1. The geometry of the critical points of the Green function on a flat torus Eτ , as τ varies in the moduliM1, plays a fundamental role in our analysis of the Painleve IV equation. In particular, the conjectures raised in [22] on the shape of the domain Ω5 ⊂ M1, which consists of tori whose Green function has extra pair of critical points, are completely solved here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信