关于$\mathcal{F}$-同胚态射

IF 0.7 Q2 MATHEMATICS
Berke Kalebog̃az, D. Keskin Tütüncü
{"title":"关于$\\mathcal{F}$-同胚态射","authors":"Berke Kalebog̃az, D. Keskin Tütüncü","doi":"10.31801/cfsuasmas.1061084","DOIUrl":null,"url":null,"abstract":"In this paper, we first define the notion of $\\mathcal{F}$-cosmall quotient for an additive exact substructure $\\mathcal{F}$ of an exact structure $\\mathcal{E}$ in an additive category $\\mathcal{A}$. We show that every $\\mathcal{F}$-cosmall quotient is right minimal in some cases. We also give the definition of $\\mathcal{F}$-superfluous quotient and we relate it the approximation of modules. As an application, we investigate our results in a pure-exact substructure $\\mathcal{F}$.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On $\\\\mathcal{F}$-cosmall morphisms\",\"authors\":\"Berke Kalebog̃az, D. Keskin Tütüncü\",\"doi\":\"10.31801/cfsuasmas.1061084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first define the notion of $\\\\mathcal{F}$-cosmall quotient for an additive exact substructure $\\\\mathcal{F}$ of an exact structure $\\\\mathcal{E}$ in an additive category $\\\\mathcal{A}$. We show that every $\\\\mathcal{F}$-cosmall quotient is right minimal in some cases. We also give the definition of $\\\\mathcal{F}$-superfluous quotient and we relate it the approximation of modules. As an application, we investigate our results in a pure-exact substructure $\\\\mathcal{F}$.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1061084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1061084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们首先定义了精确结构$\mathcal{E}$在可加范畴$\mathcal{A}$中的可加精确子结构$\math{F}$的$\mathical{F}$-cosmall商的概念。我们证明了在某些情况下,每一个$\mathcal{F}$-cosmall商都是右极小的。我们还给出了$\mathcal{F}$-多余商的定义,并将其与模的近似联系起来。作为一个应用,我们研究了纯精确子结构$\mathcal{F}$中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $\mathcal{F}$-cosmall morphisms
In this paper, we first define the notion of $\mathcal{F}$-cosmall quotient for an additive exact substructure $\mathcal{F}$ of an exact structure $\mathcal{E}$ in an additive category $\mathcal{A}$. We show that every $\mathcal{F}$-cosmall quotient is right minimal in some cases. We also give the definition of $\mathcal{F}$-superfluous quotient and we relate it the approximation of modules. As an application, we investigate our results in a pure-exact substructure $\mathcal{F}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信