{"title":"$C^*$-代数上可能奇异作用的协变表示","authors":"D. Beltiţă, H. Grundling, K. Neeb","doi":"10.4064/dm793-6-2019","DOIUrl":null,"url":null,"abstract":"Singular actions on C*-algebras are automorphic group actions on C*-algebras, where the group need not be locally compact, or the action need not be strongly continuous. We study the covariant representation theory of such actions. In the usual case of strongly continuous actions of locally compact groups on C*-algebras, this is done via crossed products, but this approach is not available for singular C*-actions (this was our path in a previous paper). The literature regarding covariant representations for singular actions is already large and scattered, and in need of some consolidation. We collect in this survey a range of results in this field, mostly known. We improve some proofs and elucidate some interconnections. These include existence theorems by Borchers and Halpern, Arveson spectra, the Borchers-Arveson theorem, standard representations and Stinespring dilations as well as ground states, KMS states and ergodic states and the spatial structure of their GNS representations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Covariant representations for possibly singular actions on $C^*$-algebras\",\"authors\":\"D. Beltiţă, H. Grundling, K. Neeb\",\"doi\":\"10.4064/dm793-6-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singular actions on C*-algebras are automorphic group actions on C*-algebras, where the group need not be locally compact, or the action need not be strongly continuous. We study the covariant representation theory of such actions. In the usual case of strongly continuous actions of locally compact groups on C*-algebras, this is done via crossed products, but this approach is not available for singular C*-actions (this was our path in a previous paper). The literature regarding covariant representations for singular actions is already large and scattered, and in need of some consolidation. We collect in this survey a range of results in this field, mostly known. We improve some proofs and elucidate some interconnections. These include existence theorems by Borchers and Halpern, Arveson spectra, the Borchers-Arveson theorem, standard representations and Stinespring dilations as well as ground states, KMS states and ergodic states and the spatial structure of their GNS representations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm793-6-2019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm793-6-2019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Covariant representations for possibly singular actions on $C^*$-algebras
Singular actions on C*-algebras are automorphic group actions on C*-algebras, where the group need not be locally compact, or the action need not be strongly continuous. We study the covariant representation theory of such actions. In the usual case of strongly continuous actions of locally compact groups on C*-algebras, this is done via crossed products, but this approach is not available for singular C*-actions (this was our path in a previous paper). The literature regarding covariant representations for singular actions is already large and scattered, and in need of some consolidation. We collect in this survey a range of results in this field, mostly known. We improve some proofs and elucidate some interconnections. These include existence theorems by Borchers and Halpern, Arveson spectra, the Borchers-Arveson theorem, standard representations and Stinespring dilations as well as ground states, KMS states and ergodic states and the spatial structure of their GNS representations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.