{"title":"论etc中的相对k群,第二部分","authors":"Oliver Braunling","doi":"10.1007/s40062-020-00267-z","DOIUrl":null,"url":null,"abstract":"<p>In a previous paper we showed that, under some assumptions, the relative <i>K</i>-group in the Burns–Flach formulation of the equivariant Tamagawa number conjecture (ETNC) is canonically isomorphic to a <i>K</i>-group of locally compact equivariant modules. Our approach as well as the standard one both involve presentations: One due to Bass–Swan, applied to categories of finitely generated projective modules; and one due to Nenashev, applied to our topological modules without finite generation assumptions. In this paper we provide an explicit isomorphism.</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 3-4","pages":"597 - 624"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00267-z","citationCount":"0","resultStr":"{\"title\":\"On the relative K-group in the ETNC, Part II\",\"authors\":\"Oliver Braunling\",\"doi\":\"10.1007/s40062-020-00267-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a previous paper we showed that, under some assumptions, the relative <i>K</i>-group in the Burns–Flach formulation of the equivariant Tamagawa number conjecture (ETNC) is canonically isomorphic to a <i>K</i>-group of locally compact equivariant modules. Our approach as well as the standard one both involve presentations: One due to Bass–Swan, applied to categories of finitely generated projective modules; and one due to Nenashev, applied to our topological modules without finite generation assumptions. In this paper we provide an explicit isomorphism.</p>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 3-4\",\"pages\":\"597 - 624\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00267-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00267-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00267-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In a previous paper we showed that, under some assumptions, the relative K-group in the Burns–Flach formulation of the equivariant Tamagawa number conjecture (ETNC) is canonically isomorphic to a K-group of locally compact equivariant modules. Our approach as well as the standard one both involve presentations: One due to Bass–Swan, applied to categories of finitely generated projective modules; and one due to Nenashev, applied to our topological modules without finite generation assumptions. In this paper we provide an explicit isomorphism.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.