利用各种时间序列模型预测印度尼西亚的COVID-19

G. Darmawan, D. Rosadi, B. N. Ruchjana, R. Pontoh, Asrirawan Asrirawan, W. Setialaksana
{"title":"利用各种时间序列模型预测印度尼西亚的COVID-19","authors":"G. Darmawan, D. Rosadi, B. N. Ruchjana, R. Pontoh, Asrirawan Asrirawan, W. Setialaksana","doi":"10.14710/medstat.15.1.83-93","DOIUrl":null,"url":null,"abstract":"In this study, Covid-19 modeling in Indonesia is carried out using a time series model. The time series model used is the time series model for discrete data. These models consist of Feedforward Neural Network (FFNN), Error, Trend, and Seasonal (ETS), Singular Spectrum Analysis (SSA), Fuzzy Time Series (FTS), Generalized Autoregression Moving Average (GARMA), and Bayesian Time Series. Based on the results of forecast accuracy calculation using MAPE (Mean Absolute Percentage Error) as model evaluation for confirmed data, the most accurate case models is the bayesian model of 0.04%, while all recovered cases yield MAPE 0.05%, except for FTS = 0.06%. For data for death cases SSA and Bayesian Models, the best with MAPE is 0.07%.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FORECASTING COVID-19 IN INDONESIA WITH VARIOUS TIME SERIES MODELS\",\"authors\":\"G. Darmawan, D. Rosadi, B. N. Ruchjana, R. Pontoh, Asrirawan Asrirawan, W. Setialaksana\",\"doi\":\"10.14710/medstat.15.1.83-93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Covid-19 modeling in Indonesia is carried out using a time series model. The time series model used is the time series model for discrete data. These models consist of Feedforward Neural Network (FFNN), Error, Trend, and Seasonal (ETS), Singular Spectrum Analysis (SSA), Fuzzy Time Series (FTS), Generalized Autoregression Moving Average (GARMA), and Bayesian Time Series. Based on the results of forecast accuracy calculation using MAPE (Mean Absolute Percentage Error) as model evaluation for confirmed data, the most accurate case models is the bayesian model of 0.04%, while all recovered cases yield MAPE 0.05%, except for FTS = 0.06%. For data for death cases SSA and Bayesian Models, the best with MAPE is 0.07%.\",\"PeriodicalId\":34146,\"journal\":{\"name\":\"Media Statistika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Media Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/medstat.15.1.83-93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/medstat.15.1.83-93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,使用时间序列模型对印度尼西亚的新冠肺炎进行建模。所使用的时间序列模型是离散数据的时间序列模式。这些模型包括前馈神经网络(FFNN)、误差、趋势和季节(ETS)、奇异谱分析(SSA)、模糊时间序列(FTS)、广义自回归移动平均(GARMA)和贝叶斯时间序列。基于使用MAPE(Mean Absolute Percentage Error,平均绝对百分比误差)作为已确认数据的模型评估的预测精度计算结果,最准确的病例模型是0.04%的贝叶斯模型,而除FTS=0.06%外,所有恢复病例的MAPE均为0.05%。对于死亡病例SSA和贝叶斯模型的数据,使用MAPE的最佳值为0.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FORECASTING COVID-19 IN INDONESIA WITH VARIOUS TIME SERIES MODELS
In this study, Covid-19 modeling in Indonesia is carried out using a time series model. The time series model used is the time series model for discrete data. These models consist of Feedforward Neural Network (FFNN), Error, Trend, and Seasonal (ETS), Singular Spectrum Analysis (SSA), Fuzzy Time Series (FTS), Generalized Autoregression Moving Average (GARMA), and Bayesian Time Series. Based on the results of forecast accuracy calculation using MAPE (Mean Absolute Percentage Error) as model evaluation for confirmed data, the most accurate case models is the bayesian model of 0.04%, while all recovered cases yield MAPE 0.05%, except for FTS = 0.06%. For data for death cases SSA and Bayesian Models, the best with MAPE is 0.07%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信