{"title":"Hurwitz平方和定理的一个可及性证明","authors":"Ezra Brown, A. Rice","doi":"10.1080/0025570X.2022.2125254","DOIUrl":null,"url":null,"abstract":"Summary We give a simple proof, intelligible to undergraduates, that a particular multiplicative formula for sums of n squares can only occur when or 8, a result originally proved by Hurwitz in 1898. We begin with a brief survey of the history of sums of squares, leading to a discussion of the related topic of normed division algebras over the real numbers. This story culminates with a crucial paper by Dickson in 1919 that not only contained an exposition of Hurwitz’s 1898 proof, but which also outlined a new process for producing division algebras over the reals. That process, now called the Cayley-Dickson construction, is intimately connected with the product formula for sums of squares and the dimensions necessary for its existence. For this reason, we present an introduction to the Cayley-Dickson construction for beginners, together with a proof of Hurwitz’s theorem accessible to anyone with a basic knowledge of undergraduate algebra.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"95 1","pages":"422 - 436"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accessible Proof of Hurwitz’s Sums of Squares Theorem\",\"authors\":\"Ezra Brown, A. Rice\",\"doi\":\"10.1080/0025570X.2022.2125254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary We give a simple proof, intelligible to undergraduates, that a particular multiplicative formula for sums of n squares can only occur when or 8, a result originally proved by Hurwitz in 1898. We begin with a brief survey of the history of sums of squares, leading to a discussion of the related topic of normed division algebras over the real numbers. This story culminates with a crucial paper by Dickson in 1919 that not only contained an exposition of Hurwitz’s 1898 proof, but which also outlined a new process for producing division algebras over the reals. That process, now called the Cayley-Dickson construction, is intimately connected with the product formula for sums of squares and the dimensions necessary for its existence. For this reason, we present an introduction to the Cayley-Dickson construction for beginners, together with a proof of Hurwitz’s theorem accessible to anyone with a basic knowledge of undergraduate algebra.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"95 1\",\"pages\":\"422 - 436\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2022.2125254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2022.2125254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
An Accessible Proof of Hurwitz’s Sums of Squares Theorem
Summary We give a simple proof, intelligible to undergraduates, that a particular multiplicative formula for sums of n squares can only occur when or 8, a result originally proved by Hurwitz in 1898. We begin with a brief survey of the history of sums of squares, leading to a discussion of the related topic of normed division algebras over the real numbers. This story culminates with a crucial paper by Dickson in 1919 that not only contained an exposition of Hurwitz’s 1898 proof, but which also outlined a new process for producing division algebras over the reals. That process, now called the Cayley-Dickson construction, is intimately connected with the product formula for sums of squares and the dimensions necessary for its existence. For this reason, we present an introduction to the Cayley-Dickson construction for beginners, together with a proof of Hurwitz’s theorem accessible to anyone with a basic knowledge of undergraduate algebra.