{"title":"关于“拉普拉斯类能不变量与Kirchhoff指数的比较”的评注","authors":"Xiaodan Chen, Guoliang Hao","doi":"10.13001/ela.2022.6383","DOIUrl":null,"url":null,"abstract":"The Laplacian-energy-like invariant and the Kirchhoff index of an $n$-vertex simple connected graph $G$ are, respectively, defined to be $LEL(G)=\\sum_{i=1}^{n-1}\\sqrt{\\mu_i}$ and $Kf(G)=n\\sum_{i=1}^{n-1}\\frac{1}{\\mu_i}$, where $\\mu_1,\\mu_2,\\ldots,\\mu_{n-1},\\mu_n=0$ are the Laplacian eigenvalues of $G$. In this paper, some results in the paper [Comparison between the Laplacian-energy-like invariant and the Kirchhoff index. Electron. J. Linear Algebra 31:27-41, 2016] are corrected and improved.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on \\\"Comparison between the Laplacian energy-like invariant and the Kirchhoff index''\",\"authors\":\"Xiaodan Chen, Guoliang Hao\",\"doi\":\"10.13001/ela.2022.6383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Laplacian-energy-like invariant and the Kirchhoff index of an $n$-vertex simple connected graph $G$ are, respectively, defined to be $LEL(G)=\\\\sum_{i=1}^{n-1}\\\\sqrt{\\\\mu_i}$ and $Kf(G)=n\\\\sum_{i=1}^{n-1}\\\\frac{1}{\\\\mu_i}$, where $\\\\mu_1,\\\\mu_2,\\\\ldots,\\\\mu_{n-1},\\\\mu_n=0$ are the Laplacian eigenvalues of $G$. In this paper, some results in the paper [Comparison between the Laplacian-energy-like invariant and the Kirchhoff index. Electron. J. Linear Algebra 31:27-41, 2016] are corrected and improved.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6383\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6383","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Remarks on "Comparison between the Laplacian energy-like invariant and the Kirchhoff index''
The Laplacian-energy-like invariant and the Kirchhoff index of an $n$-vertex simple connected graph $G$ are, respectively, defined to be $LEL(G)=\sum_{i=1}^{n-1}\sqrt{\mu_i}$ and $Kf(G)=n\sum_{i=1}^{n-1}\frac{1}{\mu_i}$, where $\mu_1,\mu_2,\ldots,\mu_{n-1},\mu_n=0$ are the Laplacian eigenvalues of $G$. In this paper, some results in the paper [Comparison between the Laplacian-energy-like invariant and the Kirchhoff index. Electron. J. Linear Algebra 31:27-41, 2016] are corrected and improved.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.