最优输运和高斯曲率方程

IF 0.6 Q4 MATHEMATICS, APPLIED
Nestor Guillen, J. Kitagawa
{"title":"最优输运和高斯曲率方程","authors":"Nestor Guillen, J. Kitagawa","doi":"10.4310/maa.2020.v27.n4.a5","DOIUrl":null,"url":null,"abstract":"In this short note, we consider the problem of prescribing the Gauss curvature and image of the Gauss map for the graph of a function over a domain in Euclidean space. The prescription of the image of the Gauss map turns this into a second boundary value problem. Our main observation is that this problem can be posed as an optimal transport problem where the target is a subset of the lower hemisphere of $\\mathbb{S}^n$. As a result we obtain existence and regularity of solutions under mild assumptions on the curvature, as well as a quantitative version of a gradient blowup result due to Urbas, which turns out to fall within the optimal transport framework.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal transport and the Gauss curvature equation\",\"authors\":\"Nestor Guillen, J. Kitagawa\",\"doi\":\"10.4310/maa.2020.v27.n4.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note, we consider the problem of prescribing the Gauss curvature and image of the Gauss map for the graph of a function over a domain in Euclidean space. The prescription of the image of the Gauss map turns this into a second boundary value problem. Our main observation is that this problem can be posed as an optimal transport problem where the target is a subset of the lower hemisphere of $\\\\mathbb{S}^n$. As a result we obtain existence and regularity of solutions under mild assumptions on the curvature, as well as a quantitative version of a gradient blowup result due to Urbas, which turns out to fall within the optimal transport framework.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2020.v27.n4.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2020.v27.n4.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这篇简短的笔记中,我们考虑了在欧几里德空间中给定一个域上的函数的图的高斯曲率和高斯映射的像的问题。高斯映象的处方把它变成了第二个边值问题。我们的主要观察是,这个问题可以被提出为一个最优传输问题,其中目标是$\mathbb{S}^n$的下半球的子集。结果,我们得到了在曲率温和假设下解的存在性和规律性,以及由于Urbas而导致的梯度爆破结果的定量版本,该结果落在最优运输框架内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal transport and the Gauss curvature equation
In this short note, we consider the problem of prescribing the Gauss curvature and image of the Gauss map for the graph of a function over a domain in Euclidean space. The prescription of the image of the Gauss map turns this into a second boundary value problem. Our main observation is that this problem can be posed as an optimal transport problem where the target is a subset of the lower hemisphere of $\mathbb{S}^n$. As a result we obtain existence and regularity of solutions under mild assumptions on the curvature, as well as a quantitative version of a gradient blowup result due to Urbas, which turns out to fall within the optimal transport framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信