有限域代数K-理论的拓扑Hochschild同调

IF 0.5 Q3 MATHEMATICS
E. Honing
{"title":"有限域代数K-理论的拓扑Hochschild同调","authors":"E. Honing","doi":"10.2140/akt.2021.6.29","DOIUrl":null,"url":null,"abstract":"Let K(Fq) be the algebraic K-theory spectrum of the finite field with q elements and let p ≥ 5 be a prime number coprime to q. In this paper we study the mod p and v1 topological Hochschild homology of K(Fq), denoted V (1)∗ THH(K(Fq)), as an Fp-algebra. The computations are organized in four different cases, depending on the mod p behaviour of the function q−1. We use different spectral sequences, in particular the Bökstedt spectral sequence and a generalization of a spectral sequence of Brun developed in an earlier paper. We calculate the Fp-algebras THH∗(K(Fq);HFp), and we compute V (1)∗ THH(K(Fq)) in the first two cases.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The topological Hochschild homology of\\nalgebraic K-theory of finite fields\",\"authors\":\"E. Honing\",\"doi\":\"10.2140/akt.2021.6.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K(Fq) be the algebraic K-theory spectrum of the finite field with q elements and let p ≥ 5 be a prime number coprime to q. In this paper we study the mod p and v1 topological Hochschild homology of K(Fq), denoted V (1)∗ THH(K(Fq)), as an Fp-algebra. The computations are organized in four different cases, depending on the mod p behaviour of the function q−1. We use different spectral sequences, in particular the Bökstedt spectral sequence and a generalization of a spectral sequence of Brun developed in an earlier paper. We calculate the Fp-algebras THH∗(K(Fq);HFp), and we compute V (1)∗ THH(K(Fq)) in the first two cases.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设K(Fq)是具有q个元素的有限域的代数K-理论谱,设p≥5是与q互质的素数。本文研究了K(Fq)作为Fp代数的模p和v1拓扑Hochschild同调性,表示为V(1)*THH(K(Fk))。根据函数q−1的mod p行为,计算分为四种不同的情况。我们使用不同的谱序列,特别是Bökstedt谱序列和Brun在早期论文中发展的谱序列的推广。我们计算了Fp代数THH*(K(Fq);HFp),并且我们在前两种情况下计算V(1)*THH(K(Fq))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The topological Hochschild homology of algebraic K-theory of finite fields
Let K(Fq) be the algebraic K-theory spectrum of the finite field with q elements and let p ≥ 5 be a prime number coprime to q. In this paper we study the mod p and v1 topological Hochschild homology of K(Fq), denoted V (1)∗ THH(K(Fq)), as an Fp-algebra. The computations are organized in four different cases, depending on the mod p behaviour of the function q−1. We use different spectral sequences, in particular the Bökstedt spectral sequence and a generalization of a spectral sequence of Brun developed in an earlier paper. We calculate the Fp-algebras THH∗(K(Fq);HFp), and we compute V (1)∗ THH(K(Fq)) in the first two cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信