Mitra Ghannadi, Hediye Hosseini, B. Sadeghi, B. Mirzakhani, M. T. Honaramooz
{"title":"快速红外加热和低温冷却对Al-Cu-Mg拉伸性能和断裂行为的影响","authors":"Mitra Ghannadi, Hediye Hosseini, B. Sadeghi, B. Mirzakhani, M. T. Honaramooz","doi":"10.22068/IJMSE.2242","DOIUrl":null,"url":null,"abstract":"The objective of this work was to investigate the effect of rapid heating and cryogenic cooling on the fracture and tensile properties of Al-Cu-Mg samples. The specimens were subjected to three different heat treatment cycles in which the Infrared heating (IR) were used as the heating medium at the ageing stage, and the liquid nitrogen and water were used as the quenching mediums. The ageing temperature and time were 1900C and from 2 to 10h respectively. The results indicated that by using IR at the ageing stage, the hardening rate enhanced because the rapid heating via this method led to faster diffusion of the alloying elements. Moreover, the high density of nanosized precipitates formed during ageing was another reason for higher strength and ductility. Cryogenic treatment had a negligible effect on both the microstructure and tensile properties. However there was an improvemnet in the ductility to some extent. Overall, the combination of a high heating rate and cryogenic treatment led to the highest mechanical properties. SEM micrographs of the fracture surface demonstrated that in Cryogenic treatment plus Artificial Ageing (CAA) condition, the surface was fully covered by deep dimples in contrast to the Cryogenic treatment plus Infrared Heating (CIR) and Water-Quench plus Infrared Heating (QIR) conditions which contained shallwer dimples. Some facets were also observed in the latter samples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Rapid Infrared Heating and Cryogenic Cooling on the Tensile Properties and Fracture Behavior of Al-Cu-Mg\",\"authors\":\"Mitra Ghannadi, Hediye Hosseini, B. Sadeghi, B. Mirzakhani, M. T. Honaramooz\",\"doi\":\"10.22068/IJMSE.2242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work was to investigate the effect of rapid heating and cryogenic cooling on the fracture and tensile properties of Al-Cu-Mg samples. The specimens were subjected to three different heat treatment cycles in which the Infrared heating (IR) were used as the heating medium at the ageing stage, and the liquid nitrogen and water were used as the quenching mediums. The ageing temperature and time were 1900C and from 2 to 10h respectively. The results indicated that by using IR at the ageing stage, the hardening rate enhanced because the rapid heating via this method led to faster diffusion of the alloying elements. Moreover, the high density of nanosized precipitates formed during ageing was another reason for higher strength and ductility. Cryogenic treatment had a negligible effect on both the microstructure and tensile properties. However there was an improvemnet in the ductility to some extent. Overall, the combination of a high heating rate and cryogenic treatment led to the highest mechanical properties. SEM micrographs of the fracture surface demonstrated that in Cryogenic treatment plus Artificial Ageing (CAA) condition, the surface was fully covered by deep dimples in contrast to the Cryogenic treatment plus Infrared Heating (CIR) and Water-Quench plus Infrared Heating (QIR) conditions which contained shallwer dimples. Some facets were also observed in the latter samples.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJMSE.2242\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.2242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of Rapid Infrared Heating and Cryogenic Cooling on the Tensile Properties and Fracture Behavior of Al-Cu-Mg
The objective of this work was to investigate the effect of rapid heating and cryogenic cooling on the fracture and tensile properties of Al-Cu-Mg samples. The specimens were subjected to three different heat treatment cycles in which the Infrared heating (IR) were used as the heating medium at the ageing stage, and the liquid nitrogen and water were used as the quenching mediums. The ageing temperature and time were 1900C and from 2 to 10h respectively. The results indicated that by using IR at the ageing stage, the hardening rate enhanced because the rapid heating via this method led to faster diffusion of the alloying elements. Moreover, the high density of nanosized precipitates formed during ageing was another reason for higher strength and ductility. Cryogenic treatment had a negligible effect on both the microstructure and tensile properties. However there was an improvemnet in the ductility to some extent. Overall, the combination of a high heating rate and cryogenic treatment led to the highest mechanical properties. SEM micrographs of the fracture surface demonstrated that in Cryogenic treatment plus Artificial Ageing (CAA) condition, the surface was fully covered by deep dimples in contrast to the Cryogenic treatment plus Infrared Heating (CIR) and Water-Quench plus Infrared Heating (QIR) conditions which contained shallwer dimples. Some facets were also observed in the latter samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.