变阶非局部算子的单调系统

Pub Date : 2022-01-01 DOI:10.5565/publmat6612205
Miguel Yangari
{"title":"变阶非局部算子的单调系统","authors":"Miguel Yangari","doi":"10.5565/publmat6612205","DOIUrl":null,"url":null,"abstract":": In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotone systems involving variable-order nonlocal operators\",\"authors\":\"Miguel Yangari\",\"doi\":\"10.5565/publmat6612205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6612205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了扩散项由核依赖于时空变量的变阶非局部算子驱动的抛物型Hamilton-Jacobi单调系统有界黏性解的存在唯一性。利用Perron方法证明了解的存在性,并在考虑线性和超线性非线性与梯度增长有关的情况下,给出了有界下解和超解的比较原理。此外,我们还给出了具有指数收敛速率的稳态大时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Monotone systems involving variable-order nonlocal operators
: In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信