{"title":"变阶非局部算子的单调系统","authors":"Miguel Yangari","doi":"10.5565/publmat6612205","DOIUrl":null,"url":null,"abstract":": In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotone systems involving variable-order nonlocal operators\",\"authors\":\"Miguel Yangari\",\"doi\":\"10.5565/publmat6612205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6612205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monotone systems involving variable-order nonlocal operators
: In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.