A. Tasung, N. Ahmed, R. Das, R. Bhattacharyya, K. Bandyopadhyay, Neera Singh, D. Das, B. Gurung, S. Datta
{"title":"印度东喜马拉雅印控\"阿鲁纳恰尔邦\"土地利用系统和海拔对土壤中天然粘土有机复合体碳稳定性的影响","authors":"A. Tasung, N. Ahmed, R. Das, R. Bhattacharyya, K. Bandyopadhyay, Neera Singh, D. Das, B. Gurung, S. Datta","doi":"10.1080/03650340.2023.2241370","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study assessed the effect of land use systems (rice-fallow, bamboo, mandarin and forest) along an altitude gradient (<500, 500–1000 and > 1000 m asl) and soil depth (0–15, 15–30 and 30–45 cm) on C stability in naturally occurring clay-organic complex (NOCOC) and their relationship with soil properties. The C stability in NOCOC (1/k) was determined from desorption rate constant (k) of humus-C by sequential extraction and was correlated with soil properties across the altitude. The C stability in NOCOC decreased (34%) with increasing soil depth from 0–15 to 30–45 cm. Across the altitudes, highest C stability in NOCOC was at > 1000 m asl (8.37 h) which was 12.7 and 9.4% higher than 500–1000 and < 500 m asl, respectively. Irrespective of soil depth and altitude, forest (5.30 h) showed the greatest C stability in NOCOC followed by mandarin (4.64 h), bamboo (4.20 h) and rice-fallow (3.85 h). Measurable soil properties could explain 90–94% variability of C stability in NOCOC across the altitude. Furthermore, C stability in NOCOC increased macroaggregate formation (0.25 mm) and ensured greater physical, chemical and microbial protection of organic C in soil.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of land use system and altitude on carbon stability in naturally occurring clay-organic complex in soils of Arunachal Pradesh in the Eastern Himalaya, India\",\"authors\":\"A. Tasung, N. Ahmed, R. Das, R. Bhattacharyya, K. Bandyopadhyay, Neera Singh, D. Das, B. Gurung, S. Datta\",\"doi\":\"10.1080/03650340.2023.2241370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study assessed the effect of land use systems (rice-fallow, bamboo, mandarin and forest) along an altitude gradient (<500, 500–1000 and > 1000 m asl) and soil depth (0–15, 15–30 and 30–45 cm) on C stability in naturally occurring clay-organic complex (NOCOC) and their relationship with soil properties. The C stability in NOCOC (1/k) was determined from desorption rate constant (k) of humus-C by sequential extraction and was correlated with soil properties across the altitude. The C stability in NOCOC decreased (34%) with increasing soil depth from 0–15 to 30–45 cm. Across the altitudes, highest C stability in NOCOC was at > 1000 m asl (8.37 h) which was 12.7 and 9.4% higher than 500–1000 and < 500 m asl, respectively. Irrespective of soil depth and altitude, forest (5.30 h) showed the greatest C stability in NOCOC followed by mandarin (4.64 h), bamboo (4.20 h) and rice-fallow (3.85 h). Measurable soil properties could explain 90–94% variability of C stability in NOCOC across the altitude. Furthermore, C stability in NOCOC increased macroaggregate formation (0.25 mm) and ensured greater physical, chemical and microbial protection of organic C in soil.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03650340.2023.2241370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2241370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of land use system and altitude on carbon stability in naturally occurring clay-organic complex in soils of Arunachal Pradesh in the Eastern Himalaya, India
ABSTRACT This study assessed the effect of land use systems (rice-fallow, bamboo, mandarin and forest) along an altitude gradient (<500, 500–1000 and > 1000 m asl) and soil depth (0–15, 15–30 and 30–45 cm) on C stability in naturally occurring clay-organic complex (NOCOC) and their relationship with soil properties. The C stability in NOCOC (1/k) was determined from desorption rate constant (k) of humus-C by sequential extraction and was correlated with soil properties across the altitude. The C stability in NOCOC decreased (34%) with increasing soil depth from 0–15 to 30–45 cm. Across the altitudes, highest C stability in NOCOC was at > 1000 m asl (8.37 h) which was 12.7 and 9.4% higher than 500–1000 and < 500 m asl, respectively. Irrespective of soil depth and altitude, forest (5.30 h) showed the greatest C stability in NOCOC followed by mandarin (4.64 h), bamboo (4.20 h) and rice-fallow (3.85 h). Measurable soil properties could explain 90–94% variability of C stability in NOCOC across the altitude. Furthermore, C stability in NOCOC increased macroaggregate formation (0.25 mm) and ensured greater physical, chemical and microbial protection of organic C in soil.