论图积的k独立数

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Abiad, Hidde Koerts
{"title":"论图积的k独立数","authors":"A. Abiad, Hidde Koerts","doi":"10.7151/dmgt.2480","DOIUrl":null,"url":null,"abstract":"Abstract The k-independence number of a graph, αk(G), is the maximum size of a set of vertices at pairwise distance greater than k, or alternatively, the independence number of the k-th power graph Gk. Although it is known that αk(G) = α(Gk), this, in general, does not hold for most graph products, and thus the existing bounds for α of graph products cannot be used. In this paper we present sharp upper bounds for the k-independence number of several graph products. In particular, we focus on the Cartesian, tensor, strong, and lexicographic products. Some of the bounds previously known in the literature for k = 1 follow as corollaries of our main results.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the k-Independence Number of Graph Products\",\"authors\":\"A. Abiad, Hidde Koerts\",\"doi\":\"10.7151/dmgt.2480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The k-independence number of a graph, αk(G), is the maximum size of a set of vertices at pairwise distance greater than k, or alternatively, the independence number of the k-th power graph Gk. Although it is known that αk(G) = α(Gk), this, in general, does not hold for most graph products, and thus the existing bounds for α of graph products cannot be used. In this paper we present sharp upper bounds for the k-independence number of several graph products. In particular, we focus on the Cartesian, tensor, strong, and lexicographic products. Some of the bounds previously known in the literature for k = 1 follow as corollaries of our main results.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2480\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2480","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

图的k独立数αk(G)是在两两距离上大于k的顶点集合的最大大小,或者是第k次幂图Gk的独立数。虽然已知αk(G) = α(Gk),但一般来说,这并不适用于大多数图积,因此不能使用图积的α的现有界。本文给出了若干图积的k无关数的明显上界。我们特别关注笛卡尔积、张量积、强积和词典积。以前在文献中已知的k = 1的一些界限是我们主要结果的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the k-Independence Number of Graph Products
Abstract The k-independence number of a graph, αk(G), is the maximum size of a set of vertices at pairwise distance greater than k, or alternatively, the independence number of the k-th power graph Gk. Although it is known that αk(G) = α(Gk), this, in general, does not hold for most graph products, and thus the existing bounds for α of graph products cannot be used. In this paper we present sharp upper bounds for the k-independence number of several graph products. In particular, we focus on the Cartesian, tensor, strong, and lexicographic products. Some of the bounds previously known in the literature for k = 1 follow as corollaries of our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信