关于非正规子群的一些推广

IF 0.7 Q2 MATHEMATICS
I. Subbotin, L. A. Kurdachenko, N. N. Semko
{"title":"关于非正规子群的一些推广","authors":"I. Subbotin, L. A. Kurdachenko, N. N. Semko","doi":"10.22108/ijgt.2018.112124.1487","DOIUrl":null,"url":null,"abstract":"A subgroup H of a group G is called malonormal in G if H ∩H = ⟨1⟩ for every element x / ∈ NG(H). These subgroups are generalizations of malnormal subgroups. Every malnormal subgroup is malonormal, and every selfnormalizing malonormal subgroup is malnormal. Furthermore, every normal subgroup is malonormal. In this paper we obtain a description of finite and certain infinite groups, whose subgroups are malonormal.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some generalization of the malnormal subgroups\",\"authors\":\"I. Subbotin, L. A. Kurdachenko, N. N. Semko\",\"doi\":\"10.22108/ijgt.2018.112124.1487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subgroup H of a group G is called malonormal in G if H ∩H = ⟨1⟩ for every element x / ∈ NG(H). These subgroups are generalizations of malnormal subgroups. Every malnormal subgroup is malonormal, and every selfnormalizing malonormal subgroup is malnormal. Furthermore, every normal subgroup is malonormal. In this paper we obtain a description of finite and certain infinite groups, whose subgroups are malonormal.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/ijgt.2018.112124.1487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/ijgt.2018.112124.1487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对每个元素x /∈NG(H) H∩H =⟨1⟩,群G的子群H在G中称为异常。这些子群是非正常子群的概括。每一个非正常子群都是非正常的,每一个自正态化的非正常子群都是非正常的。而且,每个正子群都是异常的。本文给出了有限群和某些无限群的描述,它们的子群是异常的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some generalization of the malnormal subgroups
A subgroup H of a group G is called malonormal in G if H ∩H = ⟨1⟩ for every element x / ∈ NG(H). These subgroups are generalizations of malnormal subgroups. Every malnormal subgroup is malonormal, and every selfnormalizing malonormal subgroup is malnormal. Furthermore, every normal subgroup is malonormal. In this paper we obtain a description of finite and certain infinite groups, whose subgroups are malonormal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信