Uttam V. Pawar, P. Hire, M. Gunathilake, Upaka S. Rathnayake
{"title":"印度马希盆地的时空降雨量变化和趋势","authors":"Uttam V. Pawar, P. Hire, M. Gunathilake, Upaka S. Rathnayake","doi":"10.3390/cli11080163","DOIUrl":null,"url":null,"abstract":"Climate change can have an influence on rainfall that significantly affects the magnitude frequency of floods and droughts. Therefore, the analysis of the spatiotemporal distribution, variability, and trends of rainfall over the Mahi Basin in India is an important objective of the present work. Accordingly, a serial autocorrelation, coefficient of variation, Mann–Kendall (MK) and Sen’s slope test, innovative trend analysis (ITA), and Pettitt’s test were used in the rainfall analysis. The outcomes were derived from the monthly precipitation data (1901–2012) of 14 meteorology stations in the Mahi Basin. The serial autocorrelation results showed that there is no autocorrelation in the data series. The rainfall statistics denoted that the Mahi Basin receives 94.8% of its rainfall (821 mm) in the monsoon period (June–September). The normalized accumulated departure from the mean reveals that the annual and monsoon rainfall of the Mahi Basin were below average from 1901 to 1930 and above average from 1930 to 1990, followed by a period of fluctuating conditions. Annual and monsoon rainfall variations increase in the lower catchment of the basin. The annual and monsoon rainfall trend analysis specified a significant declining tendency for four stations and an increasing tendency for 3 stations, respectively. A significant declining trend in winter rainfall was observed for 9 stations under review. Likewise, out of 14 stations, 9 stations denote a significant decrease in pre-monsoon rainfall. Nevertheless, there is no significant increasing or decreasing tendency in annual, monsoon, and post-monsoon rainfall in the Mahi Basin. The Mann–Kendall test and innovative trend analysis indicate identical tendencies of annual and seasonal rainfall on the basin scale. The annual and monsoon rainfall of the basin showed a positive shift in rainfall after 1926. The rainfall analysis confirms that despite spatiotemporal variations in rainfall, there are no significant positive or negative trends of annual and monsoon rainfall on the basin scale. It suggests that the Mahi Basin received average rainfall (867 mm) annually and in the monsoon season (821 mm) from 1901 to 2012, except for a few years of high and low rainfall. Therefore, this study is important for flood and drought management, agriculture, and water management in the Mahi Basin.","PeriodicalId":37615,"journal":{"name":"Climate","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatiotemporal Rainfall Variability and Trends over the Mahi Basin, India\",\"authors\":\"Uttam V. Pawar, P. Hire, M. Gunathilake, Upaka S. Rathnayake\",\"doi\":\"10.3390/cli11080163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change can have an influence on rainfall that significantly affects the magnitude frequency of floods and droughts. Therefore, the analysis of the spatiotemporal distribution, variability, and trends of rainfall over the Mahi Basin in India is an important objective of the present work. Accordingly, a serial autocorrelation, coefficient of variation, Mann–Kendall (MK) and Sen’s slope test, innovative trend analysis (ITA), and Pettitt’s test were used in the rainfall analysis. The outcomes were derived from the monthly precipitation data (1901–2012) of 14 meteorology stations in the Mahi Basin. The serial autocorrelation results showed that there is no autocorrelation in the data series. The rainfall statistics denoted that the Mahi Basin receives 94.8% of its rainfall (821 mm) in the monsoon period (June–September). The normalized accumulated departure from the mean reveals that the annual and monsoon rainfall of the Mahi Basin were below average from 1901 to 1930 and above average from 1930 to 1990, followed by a period of fluctuating conditions. Annual and monsoon rainfall variations increase in the lower catchment of the basin. The annual and monsoon rainfall trend analysis specified a significant declining tendency for four stations and an increasing tendency for 3 stations, respectively. A significant declining trend in winter rainfall was observed for 9 stations under review. Likewise, out of 14 stations, 9 stations denote a significant decrease in pre-monsoon rainfall. Nevertheless, there is no significant increasing or decreasing tendency in annual, monsoon, and post-monsoon rainfall in the Mahi Basin. The Mann–Kendall test and innovative trend analysis indicate identical tendencies of annual and seasonal rainfall on the basin scale. The annual and monsoon rainfall of the basin showed a positive shift in rainfall after 1926. The rainfall analysis confirms that despite spatiotemporal variations in rainfall, there are no significant positive or negative trends of annual and monsoon rainfall on the basin scale. It suggests that the Mahi Basin received average rainfall (867 mm) annually and in the monsoon season (821 mm) from 1901 to 2012, except for a few years of high and low rainfall. Therefore, this study is important for flood and drought management, agriculture, and water management in the Mahi Basin.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli11080163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11080163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Spatiotemporal Rainfall Variability and Trends over the Mahi Basin, India
Climate change can have an influence on rainfall that significantly affects the magnitude frequency of floods and droughts. Therefore, the analysis of the spatiotemporal distribution, variability, and trends of rainfall over the Mahi Basin in India is an important objective of the present work. Accordingly, a serial autocorrelation, coefficient of variation, Mann–Kendall (MK) and Sen’s slope test, innovative trend analysis (ITA), and Pettitt’s test were used in the rainfall analysis. The outcomes were derived from the monthly precipitation data (1901–2012) of 14 meteorology stations in the Mahi Basin. The serial autocorrelation results showed that there is no autocorrelation in the data series. The rainfall statistics denoted that the Mahi Basin receives 94.8% of its rainfall (821 mm) in the monsoon period (June–September). The normalized accumulated departure from the mean reveals that the annual and monsoon rainfall of the Mahi Basin were below average from 1901 to 1930 and above average from 1930 to 1990, followed by a period of fluctuating conditions. Annual and monsoon rainfall variations increase in the lower catchment of the basin. The annual and monsoon rainfall trend analysis specified a significant declining tendency for four stations and an increasing tendency for 3 stations, respectively. A significant declining trend in winter rainfall was observed for 9 stations under review. Likewise, out of 14 stations, 9 stations denote a significant decrease in pre-monsoon rainfall. Nevertheless, there is no significant increasing or decreasing tendency in annual, monsoon, and post-monsoon rainfall in the Mahi Basin. The Mann–Kendall test and innovative trend analysis indicate identical tendencies of annual and seasonal rainfall on the basin scale. The annual and monsoon rainfall of the basin showed a positive shift in rainfall after 1926. The rainfall analysis confirms that despite spatiotemporal variations in rainfall, there are no significant positive or negative trends of annual and monsoon rainfall on the basin scale. It suggests that the Mahi Basin received average rainfall (867 mm) annually and in the monsoon season (821 mm) from 1901 to 2012, except for a few years of high and low rainfall. Therefore, this study is important for flood and drought management, agriculture, and water management in the Mahi Basin.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.