空间与时空分数阶偏微分方程的极大值原理

IF 0.7 3区 数学 Q2 MATHEMATICS
M. Kirane, B. Torebek
{"title":"空间与时空分数阶偏微分方程的极大值原理","authors":"M. Kirane, B. Torebek","doi":"10.4171/ZAA/1685","DOIUrl":null,"url":null,"abstract":"In this paper we obtain new estimates of the sequential Caputo fractional derivatives of a function at its extremum points. We derive comparison principles for the linear fractional differential equations, and apply these principles to obtain lower and upper bounds of solutions of linear and nonlinear fractional differential equations. The extremum principle is then applied to show that the initial-boundary-value problem for nonlinear anomalous diffusion possesses at most one classical solution and this solution depends continuously on the initial and boundary data. This answers positively to the open problem about maximum principle for the space and time-space fractional PDEs posed by Luchko in 2011. The extremum principle for an elliptic equation with a fractional derivative and for the fractional Laplace equation are also proved.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Maximum Principle for Space and Time-Space Fractional Partial Differential Equations\",\"authors\":\"M. Kirane, B. Torebek\",\"doi\":\"10.4171/ZAA/1685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we obtain new estimates of the sequential Caputo fractional derivatives of a function at its extremum points. We derive comparison principles for the linear fractional differential equations, and apply these principles to obtain lower and upper bounds of solutions of linear and nonlinear fractional differential equations. The extremum principle is then applied to show that the initial-boundary-value problem for nonlinear anomalous diffusion possesses at most one classical solution and this solution depends continuously on the initial and boundary data. This answers positively to the open problem about maximum principle for the space and time-space fractional PDEs posed by Luchko in 2011. The extremum principle for an elliptic equation with a fractional derivative and for the fractional Laplace equation are also proved.\",\"PeriodicalId\":54402,\"journal\":{\"name\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1685\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1685","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文给出了函数在极值点上的序卡普托分数阶导数的新估计。我们导出了线性分数阶微分方程的比较原理,并应用这些原理得到了线性和非线性分数阶微分方程解的下界和上界。然后应用极值原理证明了非线性异常扩散的初边值问题最多有一个经典解,且该解连续依赖于初始数据和边界数据。这正面回答了Luchko(2011)提出的关于空间和时空分数阶偏微分方程的极大原理的开放问题。并证明了带分数阶导数的椭圆型方程和分数阶拉普拉斯方程的极值原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Principle for Space and Time-Space Fractional Partial Differential Equations
In this paper we obtain new estimates of the sequential Caputo fractional derivatives of a function at its extremum points. We derive comparison principles for the linear fractional differential equations, and apply these principles to obtain lower and upper bounds of solutions of linear and nonlinear fractional differential equations. The extremum principle is then applied to show that the initial-boundary-value problem for nonlinear anomalous diffusion possesses at most one classical solution and this solution depends continuously on the initial and boundary data. This answers positively to the open problem about maximum principle for the space and time-space fractional PDEs posed by Luchko in 2011. The extremum principle for an elliptic equation with a fractional derivative and for the fractional Laplace equation are also proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications. To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信