M. Warren, J. Ali-Lavroff, J. McVicar, T. Magoga, B. Shabani, D. Holloway, G. Thomas
{"title":"高速穿波双体船正常运行疲劳评估","authors":"M. Warren, J. Ali-Lavroff, J. McVicar, T. Magoga, B. Shabani, D. Holloway, G. Thomas","doi":"10.5750/ijme.v164i1.736","DOIUrl":null,"url":null,"abstract":"The estimation of fatigue life in the design process is particularly important for weight-optimised ships such as high-speed aluminium craft, but to date no research has been published on the fatigue accumulation on large wave-piercing catamarans, focusing on long-term operations. This paper assesses the applicability of classification society rules for high-speed catamarans with respect to fatigue design. This was achieved by comparing the long-term distributions of stress, measured on a 111m long wave-piercing catamaran ferry whilst operating in the Canary Islands and during the delivery voyage, with load spectra estimated using a method accepted by the classification society, DNV. The paper also proposes an improved distribution fitment method for fatigue analysis. A detailed method to convert measured stress histories in the time domain into an appropriate stress-spectrum and fitment of Weibull parameters is presented. Results show that the simplified method accepted by the classification society is highly conservative regarding fatigue estimation compared to fatigue results based on measured data. The proposed combined Weibull fitment method substantially improves the accuracy of simplified fatigue analysis methods.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fatigue Estimation on a High-Speed Wave Piercing Catamaran During Normal Operations\",\"authors\":\"M. Warren, J. Ali-Lavroff, J. McVicar, T. Magoga, B. Shabani, D. Holloway, G. Thomas\",\"doi\":\"10.5750/ijme.v164i1.736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of fatigue life in the design process is particularly important for weight-optimised ships such as high-speed aluminium craft, but to date no research has been published on the fatigue accumulation on large wave-piercing catamarans, focusing on long-term operations. This paper assesses the applicability of classification society rules for high-speed catamarans with respect to fatigue design. This was achieved by comparing the long-term distributions of stress, measured on a 111m long wave-piercing catamaran ferry whilst operating in the Canary Islands and during the delivery voyage, with load spectra estimated using a method accepted by the classification society, DNV. The paper also proposes an improved distribution fitment method for fatigue analysis. A detailed method to convert measured stress histories in the time domain into an appropriate stress-spectrum and fitment of Weibull parameters is presented. Results show that the simplified method accepted by the classification society is highly conservative regarding fatigue estimation compared to fatigue results based on measured data. The proposed combined Weibull fitment method substantially improves the accuracy of simplified fatigue analysis methods.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v164i1.736\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v164i1.736","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Fatigue Estimation on a High-Speed Wave Piercing Catamaran During Normal Operations
The estimation of fatigue life in the design process is particularly important for weight-optimised ships such as high-speed aluminium craft, but to date no research has been published on the fatigue accumulation on large wave-piercing catamarans, focusing on long-term operations. This paper assesses the applicability of classification society rules for high-speed catamarans with respect to fatigue design. This was achieved by comparing the long-term distributions of stress, measured on a 111m long wave-piercing catamaran ferry whilst operating in the Canary Islands and during the delivery voyage, with load spectra estimated using a method accepted by the classification society, DNV. The paper also proposes an improved distribution fitment method for fatigue analysis. A detailed method to convert measured stress histories in the time domain into an appropriate stress-spectrum and fitment of Weibull parameters is presented. Results show that the simplified method accepted by the classification society is highly conservative regarding fatigue estimation compared to fatigue results based on measured data. The proposed combined Weibull fitment method substantially improves the accuracy of simplified fatigue analysis methods.
期刊介绍:
The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.