用椭圆穿孔改善钢板剪力墙的循环性能

IF 1 Q4 ENGINEERING, CIVIL
E. Z. Beydokhti, Hashem Khatibi
{"title":"用椭圆穿孔改善钢板剪力墙的循环性能","authors":"E. Z. Beydokhti, Hashem Khatibi","doi":"10.22059/CEIJ.2019.276064.1553","DOIUrl":null,"url":null,"abstract":"In this paper, the effect of elliptical shape openings was numerically compared to the case when circular openings were used in the steel panel shear walls. At first, the finite element model in ABAQUS was calibrated by experimental results, obtained from previous studies. Then, three steel shear panels with different sizes of elliptical openings were analyzed under cyclic loads, and the results were compared to those circular perforations. Moreover, comparisons of cyclic response parameters such as elastic stiffness, ductility ratio, and energy absorption were made. According to the results, the shape of the openings has a significant effect on the seismic behavior of the perforated shear wall. The elliptical opening with the smaller to larger diameter ratio, equal to 0.5, increased the ultimate capacity by 15%. Furthermore, the elastic stiffness, ductility ratio of the frame, and the absorbed energy were promoted by 28%, 3%, and 8%, respectively. Finally, the distance between the openings was improved. Using a ratio of about 0.17 for the center to center distance of elliptical openings to the total width of steel panel led to the best performance.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Cyclic Behavior of Steel Plate Shear Walls with Elliptical Perforations\",\"authors\":\"E. Z. Beydokhti, Hashem Khatibi\",\"doi\":\"10.22059/CEIJ.2019.276064.1553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effect of elliptical shape openings was numerically compared to the case when circular openings were used in the steel panel shear walls. At first, the finite element model in ABAQUS was calibrated by experimental results, obtained from previous studies. Then, three steel shear panels with different sizes of elliptical openings were analyzed under cyclic loads, and the results were compared to those circular perforations. Moreover, comparisons of cyclic response parameters such as elastic stiffness, ductility ratio, and energy absorption were made. According to the results, the shape of the openings has a significant effect on the seismic behavior of the perforated shear wall. The elliptical opening with the smaller to larger diameter ratio, equal to 0.5, increased the ultimate capacity by 15%. Furthermore, the elastic stiffness, ductility ratio of the frame, and the absorbed energy were promoted by 28%, 3%, and 8%, respectively. Finally, the distance between the openings was improved. Using a ratio of about 0.17 for the center to center distance of elliptical openings to the total width of steel panel led to the best performance.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/CEIJ.2019.276064.1553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2019.276064.1553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,将椭圆形开口的效果与钢板剪力墙中使用圆形开口的情况进行了数值比较。首先,根据以往研究的实验结果,对ABAQUS中的有限元模型进行了标定。然后,对三种不同椭圆开孔尺寸的钢剪切板在循环荷载作用下进行了分析,并将结果与圆形开孔的结果进行了比较。此外,还对弹性刚度、延性比和能量吸收等循环响应参数进行了比较。结果表明,开孔的形状对开孔剪力墙的抗震性能有显著影响。直径比为0.5的椭圆形开口使极限承载力增加了15%。此外,框架的弹性刚度、延性比和吸收能量分别提高了28%、3%和8%。最后,开口之间的距离得到了改善。椭圆形开口的中心距与钢板的总宽度的比值约为0.17,可获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Cyclic Behavior of Steel Plate Shear Walls with Elliptical Perforations
In this paper, the effect of elliptical shape openings was numerically compared to the case when circular openings were used in the steel panel shear walls. At first, the finite element model in ABAQUS was calibrated by experimental results, obtained from previous studies. Then, three steel shear panels with different sizes of elliptical openings were analyzed under cyclic loads, and the results were compared to those circular perforations. Moreover, comparisons of cyclic response parameters such as elastic stiffness, ductility ratio, and energy absorption were made. According to the results, the shape of the openings has a significant effect on the seismic behavior of the perforated shear wall. The elliptical opening with the smaller to larger diameter ratio, equal to 0.5, increased the ultimate capacity by 15%. Furthermore, the elastic stiffness, ductility ratio of the frame, and the absorbed energy were promoted by 28%, 3%, and 8%, respectively. Finally, the distance between the openings was improved. Using a ratio of about 0.17 for the center to center distance of elliptical openings to the total width of steel panel led to the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信