超高分子量聚乙烯/芳纶-聚酯包芯纱复合材料的低速冲击性能

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Weinan Guo, Hao Chang, Jiahuan Ni, K. Zhu, Bo Gao, Dan Yang, Yantao Gao
{"title":"超高分子量聚乙烯/芳纶-聚酯包芯纱复合材料的低速冲击性能","authors":"Weinan Guo, Hao Chang, Jiahuan Ni, K. Zhu, Bo Gao, Dan Yang, Yantao Gao","doi":"10.1177/15280837231154020","DOIUrl":null,"url":null,"abstract":"The impact resistant composite has excellent energy absorption efficiency, but the structure and material selection of the composite have great influence on its energy absorption. In order to explore the effect of structure on the energy absorption of Ultra-high molecular weight polyethylene (UHMWPE) composites and the application potential of new aramid core-spun yarn and new polyester core-spun yarn in impact resistant composites. The UHMWPE composites with different fiber orientations and stacking sequences structure, as well as the new hybrid composites containing aramid core-spun yarn and polyester core-spun yarn were tested by low-velocity impact test and scanning electron microscope (SEM) observation. The differences of energy absorption of UHMWPE composites with different structures and the advantages of the new hybrid composites were analyzed. The results show that the energy absorption of the 45°/0°/90°/−45° UHMWPE composite is 15% and 86% higher than that of the 0°/90°/0°/90°UHMWPE composite and the 0°/90°/45°/−45° UHMWPE composite, respectively, which is the best structure among the three composites. The energy absorption performance of the composites introduced with aramid core-spun yarn and polyester core-spun yarn were improved by 223% and 202%, respectively, so that the energy absorption performance was significantly improved by new yarns.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-velocity impact performance of ultra-high molecular weight polyethylene/aramid-polyester core-spun yarn hybrid composites\",\"authors\":\"Weinan Guo, Hao Chang, Jiahuan Ni, K. Zhu, Bo Gao, Dan Yang, Yantao Gao\",\"doi\":\"10.1177/15280837231154020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact resistant composite has excellent energy absorption efficiency, but the structure and material selection of the composite have great influence on its energy absorption. In order to explore the effect of structure on the energy absorption of Ultra-high molecular weight polyethylene (UHMWPE) composites and the application potential of new aramid core-spun yarn and new polyester core-spun yarn in impact resistant composites. The UHMWPE composites with different fiber orientations and stacking sequences structure, as well as the new hybrid composites containing aramid core-spun yarn and polyester core-spun yarn were tested by low-velocity impact test and scanning electron microscope (SEM) observation. The differences of energy absorption of UHMWPE composites with different structures and the advantages of the new hybrid composites were analyzed. The results show that the energy absorption of the 45°/0°/90°/−45° UHMWPE composite is 15% and 86% higher than that of the 0°/90°/0°/90°UHMWPE composite and the 0°/90°/45°/−45° UHMWPE composite, respectively, which is the best structure among the three composites. The energy absorption performance of the composites introduced with aramid core-spun yarn and polyester core-spun yarn were improved by 223% and 202%, respectively, so that the energy absorption performance was significantly improved by new yarns.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837231154020\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837231154020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

抗冲击复合材料具有优异的能量吸收效率,但复合材料的结构和材料选择对其能量吸收有很大影响。为了探讨结构对超高分子量聚乙烯(UHMWPE)复合材料能量吸收的影响,以及新型芳纶包芯纱和新型聚酯包芯纱在抗冲击复合材料中的应用潜力。通过低速冲击试验和扫描电子显微镜(SEM)观察,对不同纤维取向和堆积顺序结构的超高分子量聚乙烯复合材料以及含有芳纶包芯纱和聚酯包芯纱的新型杂化复合材料进行了测试。分析了不同结构的超高分子量聚乙烯复合材料吸能性能的差异以及新型杂化复合材料的优点。结果表明,45°/0°/90°/-45°UHMWPE复合材料的能量吸收率分别比0°/90℃/0°-90°UHMW聚乙烯复合材料和0℃/90℃/45°/-45℃UHMWPE组合材料高15%和86%,是三种复合材料中结构最好的。芳纶包芯纱和聚酯包芯纱引入的复合材料的吸能性能分别提高了223%和202%,因此新型纱线显著提高了吸能性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-velocity impact performance of ultra-high molecular weight polyethylene/aramid-polyester core-spun yarn hybrid composites
The impact resistant composite has excellent energy absorption efficiency, but the structure and material selection of the composite have great influence on its energy absorption. In order to explore the effect of structure on the energy absorption of Ultra-high molecular weight polyethylene (UHMWPE) composites and the application potential of new aramid core-spun yarn and new polyester core-spun yarn in impact resistant composites. The UHMWPE composites with different fiber orientations and stacking sequences structure, as well as the new hybrid composites containing aramid core-spun yarn and polyester core-spun yarn were tested by low-velocity impact test and scanning electron microscope (SEM) observation. The differences of energy absorption of UHMWPE composites with different structures and the advantages of the new hybrid composites were analyzed. The results show that the energy absorption of the 45°/0°/90°/−45° UHMWPE composite is 15% and 86% higher than that of the 0°/90°/0°/90°UHMWPE composite and the 0°/90°/45°/−45° UHMWPE composite, respectively, which is the best structure among the three composites. The energy absorption performance of the composites introduced with aramid core-spun yarn and polyester core-spun yarn were improved by 223% and 202%, respectively, so that the energy absorption performance was significantly improved by new yarns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信