Chao He, Yalan Liu, Jinxiang Chen, N. Hao, Zhensheng Guo
{"title":"不同泡沫密度和高厚比的蜂窝板和甲壳虫elytron板的压缩力学性能","authors":"Chao He, Yalan Liu, Jinxiang Chen, N. Hao, Zhensheng Guo","doi":"10.1177/10996362221134101","DOIUrl":null,"url":null,"abstract":"To investigate a new type of bionic energy-saving sandwich plate—the beetle elytron plate (BEP), the compressive mechanical properties of short basalt fiber reinforced epoxy resin composite BEPs and honeycomb plates with different polyvinyl chloride foam densities and height-to-thickness ratios were investigated. The mechanism of the coupling effect of the core structure, foam density and height-to-thickness ratio was revealed by observing the failure mode of the outer and inner ring honeycomb walls. This study can provide useful instruction for designing lightweight sandwich structures and accelerate the application of BEPs in engineering.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"25 1","pages":"372 - 386"},"PeriodicalIF":3.5000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The compressive mechanical properties of honeycomb plates and beetle elytron plates with different foam densities and height-to-thickness ratios\",\"authors\":\"Chao He, Yalan Liu, Jinxiang Chen, N. Hao, Zhensheng Guo\",\"doi\":\"10.1177/10996362221134101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate a new type of bionic energy-saving sandwich plate—the beetle elytron plate (BEP), the compressive mechanical properties of short basalt fiber reinforced epoxy resin composite BEPs and honeycomb plates with different polyvinyl chloride foam densities and height-to-thickness ratios were investigated. The mechanism of the coupling effect of the core structure, foam density and height-to-thickness ratio was revealed by observing the failure mode of the outer and inner ring honeycomb walls. This study can provide useful instruction for designing lightweight sandwich structures and accelerate the application of BEPs in engineering.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"25 1\",\"pages\":\"372 - 386\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362221134101\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221134101","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The compressive mechanical properties of honeycomb plates and beetle elytron plates with different foam densities and height-to-thickness ratios
To investigate a new type of bionic energy-saving sandwich plate—the beetle elytron plate (BEP), the compressive mechanical properties of short basalt fiber reinforced epoxy resin composite BEPs and honeycomb plates with different polyvinyl chloride foam densities and height-to-thickness ratios were investigated. The mechanism of the coupling effect of the core structure, foam density and height-to-thickness ratio was revealed by observing the failure mode of the outer and inner ring honeycomb walls. This study can provide useful instruction for designing lightweight sandwich structures and accelerate the application of BEPs in engineering.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).