基于正弦剪切和正态变形理论的FGM板弯曲分析

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sunil S. Yadav, Keshav K. Sangle, Swapnil A. Shinde, Sandeep S. Pendhari, Yuwaraj M. Ghugal
{"title":"基于正弦剪切和正态变形理论的FGM板弯曲分析","authors":"Sunil S. Yadav,&nbsp;Keshav K. Sangle,&nbsp;Swapnil A. Shinde,&nbsp;Sandeep S. Pendhari,&nbsp;Yuwaraj M. Ghugal","doi":"10.1016/j.finmec.2023.100185","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displacement includes the effect of transverse normal strain using the cosine function in thickness coordinate. The displacement field of the theory enforces to satisfy shear stress-free boundary conditions on the top and bottom surfaces of the plate with realistic variations across the thickness. Plate material properties vary across thickness directions according to a power law. The boundary value problem of the theory is derived using the principle of virtual work. Simply supported plate bending problems are solved using the Navier solution technique. Response of the plate is obtained with respect to the type of load, type of plate, aspect ratio, and power law index. The results of present theory are compared with those of quasi-3D discrete layer theory and semi-analytical solutions based on the theory of elasticity to ensure the accuracy of theory. The current theory showed excellent agreement with more exact theories in bending response.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bending analysis of FGM plates using sinusoidal shear and normal deformation theory\",\"authors\":\"Sunil S. Yadav,&nbsp;Keshav K. Sangle,&nbsp;Swapnil A. Shinde,&nbsp;Sandeep S. Pendhari,&nbsp;Yuwaraj M. Ghugal\",\"doi\":\"10.1016/j.finmec.2023.100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displacement includes the effect of transverse normal strain using the cosine function in thickness coordinate. The displacement field of the theory enforces to satisfy shear stress-free boundary conditions on the top and bottom surfaces of the plate with realistic variations across the thickness. Plate material properties vary across thickness directions according to a power law. The boundary value problem of the theory is derived using the principle of virtual work. Simply supported plate bending problems are solved using the Navier solution technique. Response of the plate is obtained with respect to the type of load, type of plate, aspect ratio, and power law index. The results of present theory are compared with those of quasi-3D discrete layer theory and semi-analytical solutions based on the theory of elasticity to ensure the accuracy of theory. The current theory showed excellent agreement with more exact theories in bending response.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用正弦剪切法向变形理论对功能梯度材料(FGM)板进行了弯曲分析。平面内位移在厚度坐标中采用正弦函数,考虑横向剪切变形的影响;横向位移在厚度坐标中采用余弦函数,考虑横向法向应变的影响。该理论的位移场强制满足板的上下表面无剪切应力边界条件,并具有实际的厚度变化。板材材料的性能在厚度方向上按幂律变化。利用虚功原理导出了该理论的边值问题。简支板的弯曲问题用Navier法求解。根据荷载类型、板的类型、宽高比和幂律指数,得到了板的响应。将本理论的结果与准三维离散层理论和基于弹性理论的半解析解的结果进行了比较,以保证理论的准确性。目前的理论与更精确的理论在弯曲响应方面表现出良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bending analysis of FGM plates using sinusoidal shear and normal deformation theory

This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displacement includes the effect of transverse normal strain using the cosine function in thickness coordinate. The displacement field of the theory enforces to satisfy shear stress-free boundary conditions on the top and bottom surfaces of the plate with realistic variations across the thickness. Plate material properties vary across thickness directions according to a power law. The boundary value problem of the theory is derived using the principle of virtual work. Simply supported plate bending problems are solved using the Navier solution technique. Response of the plate is obtained with respect to the type of load, type of plate, aspect ratio, and power law index. The results of present theory are compared with those of quasi-3D discrete layer theory and semi-analytical solutions based on the theory of elasticity to ensure the accuracy of theory. The current theory showed excellent agreement with more exact theories in bending response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信