M. Cieslak, N. Khan, Pascal Ferraro, R. Soolanayakanahally, S. J. Robinson, I. Parkin, Ian McQuillan, P. Prusinkiewicz
{"title":"基于图像的表型组学L系统模型:以玉米和油菜为例","authors":"M. Cieslak, N. Khan, Pascal Ferraro, R. Soolanayakanahally, S. J. Robinson, I. Parkin, Ian McQuillan, P. Prusinkiewicz","doi":"10.1093/insilicoplants/diab039","DOIUrl":null,"url":null,"abstract":"\n Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"L-system models for image-based phenomics: case studies of maize and canola\",\"authors\":\"M. Cieslak, N. Khan, Pascal Ferraro, R. Soolanayakanahally, S. J. Robinson, I. Parkin, Ian McQuillan, P. Prusinkiewicz\",\"doi\":\"10.1093/insilicoplants/diab039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.\",\"PeriodicalId\":36138,\"journal\":{\"name\":\"in silico Plants\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"in silico Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/insilicoplants/diab039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diab039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
L-system models for image-based phenomics: case studies of maize and canola
Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.