基于图像的表型组学L系统模型:以玉米和油菜为例

IF 2.6 Q1 AGRONOMY
M. Cieslak, N. Khan, Pascal Ferraro, R. Soolanayakanahally, S. J. Robinson, I. Parkin, Ian McQuillan, P. Prusinkiewicz
{"title":"基于图像的表型组学L系统模型:以玉米和油菜为例","authors":"M. Cieslak, N. Khan, Pascal Ferraro, R. Soolanayakanahally, S. J. Robinson, I. Parkin, Ian McQuillan, P. Prusinkiewicz","doi":"10.1093/insilicoplants/diab039","DOIUrl":null,"url":null,"abstract":"\n Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"L-system models for image-based phenomics: case studies of maize and canola\",\"authors\":\"M. Cieslak, N. Khan, Pascal Ferraro, R. Soolanayakanahally, S. J. Robinson, I. Parkin, Ian McQuillan, P. Prusinkiewicz\",\"doi\":\"10.1093/insilicoplants/diab039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.\",\"PeriodicalId\":36138,\"journal\":{\"name\":\"in silico Plants\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"in silico Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/insilicoplants/diab039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diab039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 7

摘要

识别和量化作物相关方面的人工神经网络在基于图像的表型组学中显示出巨大的前景,但它们的训练需要许多带注释的图像。这些图像的获取相对简单,但手工标注耗时较长。逼真的植物模型,可以自动注释,因此为训练目的提供了一个有吸引力的替代真实植物图像。本文以玉米和油菜为例,展示了如何快速构建和校准这些模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L-system models for image-based phenomics: case studies of maize and canola
Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
in silico Plants
in silico Plants Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
4.70
自引率
9.70%
发文量
21
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信